人教版八年級上冊數(shù)學復習知識點100個
人教版八年級上冊數(shù)學復習知識點100個
步入八年級的同學們,你還在為記數(shù)學知識點而煩惱嗎?下面學習啦小編分享人教版八年級上冊數(shù)學復習知識點,供你參考。
人教版八年級上冊數(shù)學復習知識點100個
1 全等三角形的對應邊、對應角相等
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
9 角的平分線是到角的兩邊距離相等的所有點的集合
10 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
25 推論1 三個角都相等的三角形是等邊三角形
26 推論 2 有一個角等于60°的等腰三角形是等邊三角形
27 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
28 直角三角形斜邊上的中線等于斜邊上的一半
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
32 定理1 關于某條直線對稱的兩個圖形是全等形
33 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
34定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
36勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
38定理 四邊形的內(nèi)角和等于360°
39四邊形的外角和等于360°
40多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
41推論 任意多邊的外角和等于360°
42平行四邊形性質(zhì)定理1 平行四邊形的對角相等
43平行四邊形性質(zhì)定理2 平行四邊形的對邊相等
44推論 夾在兩條平行線間的平行線段相等
45平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
50矩形性質(zhì)定理1 矩形的四個角都是直角
51矩形性質(zhì)定理2 矩形的對角線相等
52矩形判定定理1 有三個角是直角的四邊形是矩形
53矩形判定定理2 對角線相等的平行四邊形是矩形
54菱形性質(zhì)定理1 菱形的四條邊都相等
55菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
56菱形面積=對角線乘積的一半,即S=(a×b)÷2
57菱形判定定理1 四邊都相等的四邊形是菱形
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形
59正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
60正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
61定理1 關于中心對稱的兩個圖形是全等的
62定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
63逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
64等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等
65等腰梯形的兩條對角線相等
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
67對角線相等的梯形是等腰梯形
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
69 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
70 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
71 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
72 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
73 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
74 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d
75 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
77 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
79 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
80 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
84 判定定理3 三邊對應成比例,兩三角形相似(SSS)
85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
86 性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
87 性質(zhì)定理2 相似三角形周長的比等于相似比
88 性質(zhì)定理3 相似三角形面積的比等于相似比的平方
89 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
90任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
91圓是定點的距離等于定長的點的集合
92圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
93圓的外部可以看作是圓心的距離大于半徑的點的集合
94同圓或等圓的半徑相等
95到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
99定理 不在同一直線上的三點確定一個圓。
100垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧