不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 通用學習方法 > 復習方法 > 人教版數(shù)學必修2第三章高考復習試題

人教版數(shù)學必修2第三章高考復習試題

時間: 欣怡1112 分享

人教版數(shù)學必修2第三章高考復習試題

  高考數(shù)學復習做題是不可缺少的一步,想要考個好的數(shù)學成績的話就多做題吧。下面是學習啦小編分享給大家的數(shù)學必修2第三章高考復習試題的資料,希望大家喜歡!

  數(shù)學必修2第三章高考復習試題一

  1.雙曲線的方程為=1(a>0,b>0),焦距為4,一個頂點是拋物線y2=4x的焦點,則雙曲線的離心率e=(  )

  A.2 B. C. D.

  2.已知F1,F2是橢圓的兩個焦點,滿足=0的點M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是(  )

  A. (0,1) B. C. D.

  3.設F為拋物線y2=4x的焦點,A,B,C為該拋物線上三點.若=0,則||+||+||=(  )

  A.9 B.6 C.4 D.3

  4.已知拋物線y2=2px(p>0),過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的縱坐標為2,則該拋物線的準線方程為(  )

  A.x=1 B.x=-1 C.x=2 D.x=-2

  5.已知A,B,P是雙曲線=1上不同的三點,且A,B連線經(jīng)過坐標原點,若直線PA,PB的斜率乘積kPA·kPB=,則該雙曲線的離心率為(  )

  A.1 B.2 C. -1 D.-2

  6.已知拋物線y2=4x的焦點為F,準線為l,經(jīng)過F且斜率為的直線與拋物線在x軸上方的部分相交于點A,AKl,垂足為K,則AKF的面積是(  )

  A.4 B.3 C.4 D.8

  7.過拋物線y2=2px(p>0)的焦點F作傾斜角為45°的直線交拋物線于A,B兩點,若線段AB的長為8,則p=     .

  8.(2014湖南,文14)平面上一機器人在行進中始終保持與點F(1,0)的距離和到直線x=-1的距離相等.若機器人接觸不到過點P(-1,0)且斜率為k的直線,則k的取值范圍是     .

  9.已知雙曲線的中心在原點,且一個焦點為F(,0),直線y=x-1與其相交于M, N兩點,線段MN中點的橫坐標為-,求此雙曲線的方程.

  10.(2014安徽,文21)設F1,F2分別是橢圓E:=1(a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,|AF1|=3|F1B|.

  (1)若|AB|=4,ABF2的周長為16,求|AF2|;

  (2)若cosAF2B=,求橢圓E的離心率.

  11.已知點F是雙曲線=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A,B兩點,若ABE是直角三角形,則該雙曲線的離心率是(  )

  A. B.2 C.1+ D.2+

  12.(2014湖北,文8)設a,b是關于t的方程t2cosθ+tsinθ=0的兩個不等實根,則過A(a,a2),B(b,b2)兩點的直線與雙曲線=1的公共點的個數(shù)為(  )

  A.0 B.1 C.2 D.3

  13.已知橢圓C:=1(a>b>0)的離心率為,雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(  )

  A.=3 B.=1C.=-1D=-2

  C.=1 D.=1

  14.(2014江西,文20)如圖,已知拋物線C:x2=4y,過點M(0,2)任作一直線與C相交于A,B兩點,過點B作y軸的平行線與直線AO相交于點D(O為坐標原點).

  (1)證明:動點D在定直線上;

  (2)作C的任意一條切線l(不含x軸),與直線y=2相交于點N1,與(1)中的定直線相交于點N2,證明:|MN2|2-|MN1|2為定值,并求此定值.

  15.已知點A(0,-2),橢圓E:=1(a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

  (1)求E的方程;

  (2)設過點A的動直線l與E相交于P,Q兩點,當OPQ的面積最大時,求l的方程.

  數(shù)學必修2第三章高考復習試題二

  1.已知拋物線x2=ay的焦點恰好為雙曲線y2-x2=2的上焦點,則a=(  )

  A.1 B.4 C.8 D.16

  2.(2014遼寧,文8)已知點A(-2,3)在拋物線C:y2=2px的準線上,記C的焦點為F,則直線AF的斜率為(  )

  A.- B.-1 C.- D.-

  3.拋物線y=-4x2上的一點M到焦點的距離為1,則點M的縱坐標是(  )

  A.- B.- C. D.

  4.拋物線C的頂點為原點,焦點在x軸上,直線x-y=0與拋物線C交于A,B兩點,若P(1,1)為線段AB的中點,則拋物線C的方程為(  )

  A.y=2x2 B.y2=2x C.x2=2y D.y2=-2x

  5.已知拋物線C:y2=8x的焦點為F,準線與x軸的交點為K,點A在C上,且|AK|=|AF|,則AFK的面積為(  )

  A.4 B.8 C.16 D.32

  6.以拋物線x2=16y的焦點為圓心,且與拋物線的準線相切的圓的方程為     .

  7.已知拋物線x2=2py(p為常數(shù),p≠0)上不同兩點A,B的橫坐標恰好是關于x的方程x2+6x+4q=0(q為常數(shù))的兩個根,則直線AB的方程為     .

  8.已知F是拋物線C:y2=4x的焦點,A,B是C上的兩個點,線段AB的中點為M(2,2),求ABF的面積.

  9.已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.

  (1)求曲線C的方程;

  (2)是否存在正數(shù)m,對于過點M(m,0),且與曲線C有兩個交點A,B的任一直線,都有<0?若存在,求出m的取值范圍;若不存在,請說明理由.

  10.已知拋物線y2=2px,以過焦點的弦為直徑的圓與拋物線準線的位置關系是(  )

  A.相離 B.相交 C.相切 D.不確定

  11.設x1,x2R,常數(shù)a>0,定義運算“*”,x1*x2=(x1+x2)2-(x1-x2)2,若x≥0,則動點P(x,)的軌跡是(  )

  A.圓 B.橢圓的一部分

  C.雙曲線的一部分 D.拋物線的一部分

  12.已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點.若=4,則|QF|=(  )

  A. B.3 C. D.2

  13.過拋物線x2=2py(p>0)的焦點作斜率為1的直線與該拋物線交于A,B兩點,A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12,則p=     .

  14.(2014大綱全國,文22)已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且|QF|=|PQ|.

  (1)求C的方程;

  (2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線l'與C相交于M,N兩點,且A,M,B,N四點在同一圓上,求l的方程.

  15.已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有|FA|=|FD|.當點A的橫坐標為3時,ADF為正三角形.

  (1)求C的方程;

  (2)若直線l1l,且l1和C有且只有一個公共點E,

  證明直線AE過定點,并求出定點坐標;

  ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.參考答案及解析:1.C 解析:根據(jù)拋物線方程可得其焦點坐標為,雙曲線的上焦點為(0,2),依題意則有=2,解得a=8.

  2.C 解析:由已知,得準線方程為x=-2,

  F的坐標為(2,0).

  又A(-2,3),直線AF的斜率為k==-.故選C.

  3.B 解析:拋物線方程可化為x2=-,其準線方程為y=.

  設M(x0,y0),則由拋物線的定義,可知-y0=1y0=-.

  4.B 解析:設A(x1,y1),B(x2,y2),拋物線方程為y2=2px,

  則兩式相減可得2p=×(y1+y2)=kAB×2=2,

  即可得p=1,故拋物線C的方程為y2=2x.

  5.B 解析:拋物線C:y2=8x的焦點為F(2,0),準線為x=-2,K(-2,0).

  設A(x0,y0),過點A向準線作垂線AB垂足為B,則B(-2,y0).

  |AK|=|AF|,

  又|AF|=|AB|=x0-(-2)=x0+2,

  由|BK|2=|AK|2-|AB|2,

  得=(x0+2)2,即8x0=(x0+2)2,

  解得A(2,±4).

  故AFK的面積為|KF|·|y0|

  =×4×4=8.

  6.x2+(y-4)2=64 解析:拋物線的焦點為F(0,4),準線為y=-4,

  則圓心為(0,4),半徑r=8.

  故圓的方程為x2+(y-4)2=64.

  7.3x+py+2q=0 解析:由題意知,直線AB與x軸不垂直.

  設直線AB的方程為y=kx+m,與拋物線方程聯(lián)立,得x2-2pkx-2pm=0,

  此方程與x2+6x+4q=0同解,

  則解得

  故直線AB的方程為y=-x-,

  即3x+py+2q=0.

  8.解:由M(2,2)知,線段AB所在的直線的斜率存在,

  設過點M的直線方程為y-2=k(x-2)(k≠0).

  由消去y,

  得k2x2+(-4k2+4k-4)x+4(k-1)2=0.

  設A(x1,y1),B(x2,y2),

  則x1+x2=,

  x1x2=.

  由題意知=2,

  則=4,解得k=1,

  于是直線方程為y=x,x1x2=0.

  因為|AB|=|x1-x2|=4,

  又焦點F(1,0)到直線y=x的距離d=,所以ABF的面積是×4=2.

  9.解:(1)設P(x,y)是曲線C上任意一點,

  則點P(x,y)滿足-x=1(x>0),

  化簡得y2=4x(x>0).

  (2)設過點M(m,0)(m>0)的直線l與曲線C的交點為A(x1,y1),B(x2,y2).

  設l的方程為x=ty+m.

  由得y2-4ty-4m=0,

  Δ=16(t2+m)>0,

  于是

  因為=(x1-1,y1),

  =(x2-1,y2),

  所以=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+y1y2+1.

  又<0,

  所以x1x2-(x1+x2)+y1y2+1<0,③

  因為x=,所以不等式可變形為

  +y1y2-+1<0,

  即+y1y2-[(y1+y2)2-2y1y2]+1<0.

  將代入整理得m2-6m+1<4t2.

  因為對任意實數(shù)t,4t2的最小值為0

  所以不等式對于一切t成立等價于m2-6m+1<0,

  即3-20),則FD的中點為.

  因為|FA|=|FD|,

  由拋物線的定義知3+,

  解得t=3+p或t=-3(舍去).

  由=3,解得p=2.

  所以拋物線C的方程為y2=4x.

  (2)由(1)知F(1,0).

  設A(x0,y0)(x0y0≠0),D(xD,0)(xD>0),

  因為|FA|=|FD|,

  則|xD-1|=x0+1.

  由xD>0得xD=x0+2,

  故D(x0+2,0).

  故直線AB的斜率kAB=-.

  因為直線l1和直線AB平行,設直線l1的方程為y=-x+b,

  代入拋物線方程得y2+y-=0,

  由題意Δ==0,

  得b=-.

  設E(xE,yE),

  則yE=-,xE=.

  當≠4時,kAE==-,

  可得直線AE的方程為y-y0=(x-x0),

  由=4x0,整理可得y=(x-1),

  直線AE恒過點F(1,0).

  當=4時,直線AE的方程為x=1,過點F(1,0).

  所以直線AE過定點F(1,0).

  由知直線AE過焦點F(1,0),

  所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.

  設直線AE的方程為x=my+1,

  因為點A(x0,y0)在直線AE上,

  故m=.

  設B(x1,y1),

  直線AB的方程為y-y0=-(x-x0),由于y0≠0,

  可得x=-y+2+x0,

  代入拋物線方程得y2+y-8-4x0=0.

  所以y0+y1=-,

  可求得y1=-y0-,

  x1=+x0+4.

  所以點B到直線AE的距離為

  d=

  ==4.

  則ABE的面積S=×4≥16,

  當且僅當=x0,即x0=1時等號成立.

  所以ABE的面積的最小值為16.

  數(shù)學必修2第三章高考復習試題三

  1.甲、乙兩名籃球運動員每場比賽的得分情況用莖葉圖表示如右:

  則下列說法中正確的個數(shù)為(  )

  甲得分的中位數(shù)為26,乙得分的中位數(shù)為36;

  甲、乙比較,甲的穩(wěn)定性更好;

  乙有的葉集中在莖3上;

  甲有的葉集中在莖1,2,3上.

  A.1 B.2 C.3 D.4

  2.一組數(shù)據(jù)的平均數(shù)是4.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是(  )

  A.55.2,3.6 B.55.2,56.4 C.64.8,63.6 D.64.8,3.6

  3.某中學高三(2)班甲、乙兩名學生自高中以來每次考試成績的莖葉圖如圖,下列說法正確的是(  )

  A.乙學生比甲學生發(fā)揮穩(wěn)定,且平均成績也比甲學生高

  B.乙學生比甲學生發(fā)揮穩(wěn)定,但平均成績不如甲學生高

  C.甲學生比乙學生發(fā)揮穩(wěn)定,且平均成績比乙學生高

  D.甲學生比乙學生發(fā)揮穩(wěn)定,但平均成績不如乙學生高

  4.為了研究某藥品的療效,選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組.下圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(  )

  A.6 B.8 C.12 D.18

  5.若某校高一年級8個班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是(  )

  A.91.5和91.5 B.91.5和92

  C.91和91.5 D.92和92

  6.某工廠對一批產(chǎn)品進行了抽樣檢測.下圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是(  )

  A.90 B.75 C.60 D.45

  7.某賽季,甲、乙兩名籃球運動員都參加了11場比賽,他們每場比賽得分的情況用右圖所示的莖葉圖表示,若甲運動員的中位數(shù)為a,乙運動員的眾數(shù)為b,則a-b=     .

  8.為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量,產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95],由此得到頻率分布直方圖如圖,則由此估計該廠工人一天生產(chǎn)該產(chǎn)品數(shù)量在[55,70)的人數(shù)約占該廠工人總數(shù)的百分率是     .

  9.(2014廣東,文17)某車間20名工人年齡數(shù)據(jù)如下表:

  年齡(歲) 工人數(shù)(人) 19 1 28 3 29 3 30 5 31 4 32 3 40 1 合計 20

  (1)求這20名工人年齡的眾數(shù)與極差;

  (2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

  (3)求這20名工人年齡的方差.

  10.在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生大規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是(  )

  A.甲地:總體均值為3,中位數(shù)為4

  B.乙地:總體均值為1,總體方差大于0

  C.丙地:中位數(shù)為2,眾數(shù)為3

  D.丁地:總體均值為2,總體方差為3

  11.樣本(x1,x2,…,xn)的平均數(shù)為,樣本(y1,y2,…,ym)的平均數(shù)為),若樣本(x1,x2,…, xn,y1,y2,…,ym)的平均數(shù)=α+(1-α),其中0<α<,則n,m的大小關系為(  )

  A.nm C.n=m D.不能確定

  12.(2014課標全國,文18)從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結果得如下頻數(shù)分布表:

  質(zhì)量指標

  值分組 [75,85) [85,95) [95,105) [105,115) [115,125) 頻數(shù) 6 26 38 22 8

  (1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;

  (2)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

  (3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?

  參考答案

  1.C 解析:由莖葉圖可知乙的集中趨勢更好,故錯誤,正確.

  2. D 解析:每一個數(shù)據(jù)都加上60時,平均數(shù)也應加上60,而方差不變.

  3.A 解析:從莖葉圖可知乙同學的成績在80~100分分數(shù)段的有9次,而甲同學的成績在80~100分分數(shù)段的只有7次;再從題圖上還可以看出,乙同學的成績集中在90~100分分數(shù)段的最多,而甲同學的成績集中在80~90分分數(shù)段的最多.故乙同學比甲同學發(fā)揮較穩(wěn)定且平均成績也比甲同學高.

  4.C 解析:設樣本容量為n,

  由題意,得(0.24+0.16)×1×n=20,解得n=50.

  所以第三組頻數(shù)為0.36×1×50=18.

  因為第三組中沒有療效的有6人,

  所以第三組中有療效的人數(shù)為18-6=12.

  5.A 解析:按照從小到大的順序排列為87,89,90,91,92,93,94,96.

  有8個數(shù)據(jù),中位數(shù)是中間兩個數(shù)的平均數(shù):=91.5,

  平均數(shù):

  =91.5.

  6.A 解析:樣本中產(chǎn)品凈重小于100克的頻率為(0.050+0.100)×2=0.3,

  又頻數(shù)為36,樣本容量為=120.

  樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為(0.100+0.150+0.125)×2=0.75,

  樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)為120×0.75=90.

  7.8 解析:由莖葉圖可知,a=19,b=11,

  a-b=8.

  8.52.5% 解析:結合直方圖可以看出:生產(chǎn)數(shù)量在[55,65)的人數(shù)頻率為0.04×10=0.4,生產(chǎn)數(shù)量在[65,75)的人數(shù)頻率為0.025×10=0.25,而生產(chǎn)數(shù)量在[65,70)的人數(shù)頻率約為0.25×=0.125,所以生產(chǎn)數(shù)量在[55,70)的人數(shù)頻率約為0.4+0.125=0.525,即52.5%.

  9.解:(1)由圖可知,眾數(shù)為30.極差為:40-19=21.

  (2)

  1 9 2 888999 3 000001111222 4 0

  (3)根據(jù)表格可得:

  ∴s2=[(19-30)2+3(28-30)2+3(29-30)2+5(30-30)2+4(31-30)2+3(32-30)2+(40-30)2]

  =12.6.

  10.D 解析:根據(jù)信息可知,連續(xù)10天內(nèi),每天的新增疑似病例不能有超過7的數(shù),選項A中,中位數(shù)為4,可能存在大于7的數(shù);同理,在選項C中也有可能;選項B中的總體方差大于0,敘述不明確,如果數(shù)目太大,也有可能存在大于7的數(shù);選項D中,根據(jù)方差公式,如果有大于7的數(shù)存在,那么方差不會為3,故答案選D.

  11.A 解析:由題意知樣本(x1,…,xn,y1,…,ym)的平均數(shù)為,

  又=α+(1-α),即α=,1-α=.

  因為0<α<,所以0<,

  即2n

猜你喜歡:

1.高考數(shù)學立體幾何專題復習題及答案

2.高考數(shù)學二輪復習7大專題匯總

3.高考數(shù)學第三輪復習方法

4.2017高考數(shù)學模擬試題及答案

5.高考文科數(shù)學數(shù)列專題復習題及答案

3733486