初三數(shù)學(xué)上冊的知識點(diǎn)歸納
初三數(shù)學(xué)上冊的知識點(diǎn)歸納
數(shù)學(xué)是中考的重中之重,也是中考的難題。那么應(yīng)該怎么復(fù)習(xí)數(shù)學(xué)才好呢?以下是學(xué)習(xí)啦小編分享給大家的初三數(shù)學(xué)上冊的知識點(diǎn),希望可以幫到你!
初三數(shù)學(xué)上冊的知識點(diǎn)
第一單元 二次根式
1、二次根式
式子叫做二次根式,二次根式必須滿足:含有二次根號“”;被開方數(shù)a必須是非負(fù)數(shù)。
2、最簡二次根式
若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式。
化二次根式為最簡二次根式的方法和步驟:
(1)如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡。
(2)如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。
3、同類二次根式
幾個(gè)二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。
4、二次根式的性質(zhì)
5、二次根式混合運(yùn)算
二次根式的混合運(yùn)算與實(shí)數(shù)中的運(yùn)算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)。
第二單元 一元二次方程
一、一元二次方程
1、一元二次方程
含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式
,它的特征是:等式左邊十一個(gè)關(guān)于未知數(shù)x的二次多項(xiàng)式,等式右邊是零,其中叫做二次項(xiàng),a叫做二次項(xiàng)系數(shù);bx叫做一次項(xiàng),b叫做一次項(xiàng)系數(shù);c叫做常數(shù)項(xiàng)。
二、一元二次方程的解法
1、直接開平方法
2、配方法
配方法是一種重要的數(shù)學(xué)方法,它不僅在解一元二次方程上有所應(yīng)用,而且在數(shù)學(xué)的其
3、公式法
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判別式
根的判別式
四、一元二次方程根與系數(shù)的關(guān)系
第三單元 旋轉(zhuǎn)
一、旋轉(zhuǎn)
1、定義
把一個(gè)圖形繞某一點(diǎn)O轉(zhuǎn)動一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
(2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
二、中心對稱
1、定義
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)就是它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個(gè)圖形是全等形。
(2)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個(gè)圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱。
4、中心對稱圖形
把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)店就是它的對稱中心。
考點(diǎn)五、坐標(biāo)系中對稱點(diǎn)的特征
1、關(guān)于原點(diǎn)對稱的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱時(shí),它們的坐標(biāo)的符號相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P’(-x,-y)
2、關(guān)于x軸對稱的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于x軸對稱時(shí),它們的坐標(biāo)中,x相等,y的符號相反,即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P’(x,-y)
3、關(guān)于y軸對稱的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于y軸對稱時(shí),它們的坐標(biāo)中,y相等,x的符號相反,即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P’(-x,y)
第四單元 圓
一、圓的相關(guān)概念
1、圓的定義
在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線段OA叫做半徑。
2、圓的幾何表示
以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”
二、弦、弧等與圓有關(guān)的定義
(1)弦
連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的AB)
(2)直徑
經(jīng)過圓心的弦叫做直徑。(如途中的CD)
直徑等于半徑的2倍。
(3)半圓
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。
(4)弧、優(yōu)弧、劣弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。
弧用符號“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。
大于半圓的弧叫做優(yōu)弧(多用三個(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示)
三、垂徑定理及其推論
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑 平分弦 知二推三
平分弦所對的優(yōu)弧
平分弦所對的劣弧
四、圓的對稱性
1、圓的軸對稱性
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
2、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
五、弧、弦、弦心距、圓心角之間的關(guān)系定理
1、圓心角
頂點(diǎn)在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關(guān)系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
六、圓周角定理及其推論
1、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等于它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
七、點(diǎn)和圓的位置關(guān)系
設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:
d<r點(diǎn)P在⊙O內(nèi);
d=r點(diǎn)P在⊙O上;
d>r點(diǎn)P在⊙O外。
八、過三點(diǎn)的圓
1、過三點(diǎn)的圓
不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
2、三角形的外接圓
經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個(gè)三角形的外心。
4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件)
圓內(nèi)接四邊形對角互補(bǔ)。
九、反證法
先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。
十、直線與圓的位置關(guān)系
直線和圓有三種位置關(guān)系,具體如下:
(1)相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);
(2)相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,
(3)相離:直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:
直線l與⊙O相交d<r;
直線l與⊙O相切d=r;
直線l與⊙O相離d>r;
十一、切線的判定和性質(zhì)
1、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
2、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
十二、切線長定理
1、切線長
在經(jīng)過圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長叫做這點(diǎn)到圓的切線長。
2、切線長定理
從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
十三、三角形的內(nèi)切圓
1、三角形的內(nèi)切圓
與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。
2、三角形的內(nèi)心
三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心。
十四、圓和圓的位置關(guān)系
1、圓和圓的位置關(guān)系
如果兩個(gè)圓沒有公共點(diǎn),那么就說這兩個(gè)圓相離,相離分為外離和內(nèi)含兩種。
如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么就說這兩個(gè)圓相切,相切分為外切和內(nèi)切兩種。
如果兩個(gè)圓有兩個(gè)公共點(diǎn),那么就說這兩個(gè)圓相交。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距。
3、圓和圓位置關(guān)系的性質(zhì)與判定
設(shè)兩圓的半徑分別為R和r,圓心距為d,那么
兩圓外離d>R+r
兩圓外切d=R+r
兩圓相交R-r<d<R+r(R≥r)
兩圓內(nèi)切d=R-r(R>r)
兩圓內(nèi)含d<R-r(R>r)
4、兩圓相切、相交的重要性質(zhì)
如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個(gè)圓的連心線垂直平分兩圓的公共弦。
十五、正多邊形和圓
1、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關(guān)系
只要把一個(gè)圓分成相等的一些弧,就可以做出這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓就是這個(gè)正多邊形的外接圓。
十六、與正多邊形有關(guān)的概念
1、正多邊形的中心
正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個(gè)正多邊形的半徑。
3、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個(gè)正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對的外接圓的圓心角叫做這個(gè)正多邊形的中心角。
十七、正多邊形的對稱性
1、正多邊形的軸對稱性
正多邊形都是軸對稱圖形。一個(gè)正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。
2、正多邊形的中心對稱性
邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。
3、正多邊形的畫法
先用量角器或尺規(guī)等分圓,再做正多邊形。
十八、弧長和扇形面積
1、弧長公式
n°的圓心角所對的弧長l的計(jì)算公式為
2、扇形面積公式
其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長。
3、圓錐的側(cè)面積
其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑。
補(bǔ)充:(此處為大綱要求外的知識,但對開發(fā)學(xué)生智力,改善學(xué)生數(shù)學(xué)思維模式有很大幫助)
1、相交弦定理
2、弦切角定理
弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角。
弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角。
即:∠BAC=∠ADC
初三數(shù)學(xué)復(fù)習(xí)計(jì)劃
1、第一輪復(fù)習(xí)的目的是要“過三關(guān)”:
(1)過記憶關(guān)。必須做到記牢記準(zhǔn)所有的概念、公式、定理等,沒有準(zhǔn)確無誤的記憶,就不可能有好的結(jié)果。 特別是選擇題,要靠清晰的概念來明辨對錯(cuò),如果概念不清就會感覺模棱兩可,最終造成誤選。因此,要把教材中的概念整理出來,列出各單元的復(fù)習(xí)提綱。通過讀一讀、抄一抄、記一記等方法加深印象,對容易混淆的概念要徹底搞清、不留后患。
(2)過基本方法關(guān)。如,待定系數(shù)法求二次函數(shù)解析式,配方法,換元法等,在復(fù)習(xí)時(shí)應(yīng)進(jìn)行強(qiáng)化訓(xùn)練.不要把大量的時(shí)間放在解偏題難題上。偏題難題有著優(yōu)勢的一面,提高學(xué)生的解題技巧,增加多種解題思路,卻往往偏離了要求。偏難題讓學(xué)生沒有自信,思維是越走越偏,遠(yuǎn)離教材知識點(diǎn)往往是浪費(fèi)時(shí)間,收效不高。
(3)過基本技能關(guān)。如:基本計(jì)算能力;統(tǒng)計(jì)分析能力;識圖能力
2、措施:
在中考復(fù)習(xí)中,現(xiàn)在的資料可以說撲天蓋地,很多教師,經(jīng)常互相詢問用什么資料好。根據(jù)多年經(jīng)驗(yàn),其實(shí)中考復(fù)習(xí)資料雖然很重要,但并不是重要到用某一種就成功,另一種就失敗的程度。只要是最新的資料,除了編排體例不同,內(nèi)容上都是大同小異。其實(shí),我們應(yīng)該根據(jù)自己的復(fù)習(xí)模式,復(fù)習(xí)習(xí)慣選擇便于操作的資料,選編排體例應(yīng)該重于選擇資料的內(nèi)容,而不是通過資料來壓題、猜寶。因?yàn)橘Y料是死的,用他的人才是活的。一定要針對自己,針對學(xué)生情況來選擇自己的資料。同時(shí),也應(yīng)考慮到其它學(xué)科所用資料,盡量避免重復(fù),
(1)復(fù)習(xí)時(shí)教師要認(rèn)真研究教材,摸清初中數(shù)學(xué)內(nèi)容的脈絡(luò),開展基礎(chǔ)知識系統(tǒng)復(fù)習(xí)。復(fù)習(xí)要立足于課本,從教科書中尋找中考題的“影子”。盡管近年來中考數(shù)學(xué)有許多新題型,但所占分值比例較大的仍然是傳統(tǒng)的基本問題。許多試題取材于教科書,試題的構(gòu)成是在教科書中的例題、練習(xí)題、習(xí)題的基礎(chǔ)上通過類比、加工改造、加強(qiáng)條件或減弱條件、延伸或擴(kuò)展而成的,所以在復(fù)習(xí)的第一階段,應(yīng)以新課程標(biāo)準(zhǔn)為依據(jù),以教科書為藍(lán)本進(jìn)行基礎(chǔ)知識復(fù)習(xí)。
(2)教師要通過典型的例、習(xí)題講解讓學(xué)生掌握學(xué)習(xí)方法,對例、習(xí)題能舉一反三,觸類旁通,變條件、變結(jié)論、變圖形、變式子、變表達(dá)方式等。
(3)要定期檢測,及時(shí)反饋。練習(xí)要有針對性的、典型性、層次性不能盲目的加大練習(xí)量。要定期檢查學(xué)生完成的作業(yè)。教師對于作業(yè)、練習(xí)、測驗(yàn)中的問題,應(yīng)采用集中講授和個(gè)別輔導(dǎo)相結(jié)合,因材施教,全面提高復(fù)習(xí)效率。
3、第一輪復(fù)習(xí)應(yīng)該注意的幾個(gè)問題
(1)必須扎扎實(shí)實(shí)地夯實(shí)基礎(chǔ)。中考試題基礎(chǔ)分占總分比重大,因此使每個(gè)學(xué)生對初中數(shù)學(xué)知識都能達(dá)到“理解”和“掌握”的要求,在應(yīng)用基礎(chǔ)知識時(shí)能做到熟練、正確和迅速。
(2)中考有些基礎(chǔ)題是課本上的原題或改造,必須深鉆教材,絕不能脫離課本。
(3)不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類旁通。“大練習(xí)量”是相對而言的,它不是盲目的大,也不是盲目的練。而是有針對性的、典型性、層次性、切中要害的強(qiáng)化練習(xí)。做同一題型的題目不應(yīng)多,而應(yīng)題型廣泛。題目要循序漸進(jìn),從基礎(chǔ)題到開放性試題都要有所了解。在平常的學(xué)習(xí)中,要時(shí)??偨Y(jié)題型、解題方法和易錯(cuò)點(diǎn),這些總結(jié)會成為復(fù)習(xí)的第一手材料,對應(yīng)試有很大幫助。
(4)定期檢查學(xué)生完成的作業(yè),及時(shí)反饋。教師對于作業(yè)、練習(xí)、測驗(yàn)中的問題,應(yīng)采用集中講授和個(gè)別輔導(dǎo)相結(jié)合,或?qū)栴}滲透在以后的教學(xué)過程中等手辦法進(jìn)行反饋、矯正和強(qiáng)化,有利于大面積提高教學(xué)質(zhì)量。
(5)實(shí)際出發(fā),面向全體學(xué)生,因材施教,即分層次開展教學(xué)工作,全面提高復(fù)習(xí)效率。課堂復(fù)習(xí)教學(xué)實(shí)行“低起點(diǎn)、多歸納、快反饋”的方法。
(6)注重思想教育,斷激發(fā)他們學(xué)好數(shù)學(xué)的自信心,并創(chuàng)造條件,讓學(xué)困生體驗(yàn)成功。
初三數(shù)學(xué)復(fù)習(xí)避免的四大誤區(qū)
誤區(qū)
自己已經(jīng)定型看書缺乏熱情
-現(xiàn)象:
有些考生認(rèn)為,就剩一個(gè)月了,自己的成績已經(jīng)定型了,好就是好,不好就是不好。目前就是被動等待中考,心靜不下來,也不認(rèn)真看書。甚至有考生感到茫然,內(nèi)心缺乏學(xué)習(xí)熱情,被時(shí)間牽著走。
-專家觀點(diǎn):
現(xiàn)在正是激發(fā)斗志的時(shí)候。最后一個(gè)月,應(yīng)該將中考重新梳理一遍,時(shí)間足夠。每個(gè)學(xué)科最重要的考點(diǎn)再看一遍的時(shí)間剛好。
“現(xiàn)在最關(guān)鍵的是,讓自己澎湃起來。”考生要做好迎戰(zhàn)準(zhǔn)備,讓自己每天都在練習(xí),都有小有收獲,這樣逐漸讓自己興奮起來。
誤區(qū)
心情時(shí)有焦躁中考肯定會受影響
-現(xiàn)象:
有些考生現(xiàn)在會有一點(diǎn)焦慮,甚至焦躁,會出現(xiàn)看不進(jìn)去書,一道題看很久,復(fù)習(xí)效率下降等現(xiàn)象,這讓他們很害怕,覺得中考肯定受影響。
-專家觀點(diǎn):
“輕度焦慮很正常,不用過度擔(dān)心。其實(shí),與好的心理狀態(tài)相比,更重要的是:答題狀態(tài)!”
考生千萬不能過緊,這樣容易導(dǎo)致對題生厭、麻木,題拿過來看半天,反應(yīng)不過來;也不能過松,不能讓神經(jīng)徹底松下來。要保持適度緊張。“最佳狀態(tài)是,正常生活、學(xué)習(xí)的節(jié)奏,用正常心態(tài),正常答題。”
誤區(qū)
知識點(diǎn)復(fù)習(xí)差不多了
應(yīng)該多做題
-現(xiàn)象:
臨到中考前,一模、二模都已經(jīng)結(jié)束了,部分考生會感覺知識點(diǎn)復(fù)習(xí)差不多了,應(yīng)該多做題了,每天都做很多習(xí)題。甚至認(rèn)為,做更多的題目,也許就會碰到中考試題,自己押題。
-專家觀點(diǎn):
“中考題原創(chuàng)居多,將來中考遇到的一定是新題。所以,你現(xiàn)在做的題,很難碰到中考題目。”現(xiàn)在考生最重要的能力,是知識遷移的能力,就是當(dāng)你碰到新題目的時(shí)候,能從新題中分析出與你以往做過的哪些題目相近,從而把相關(guān)知識遷移出來。所以,現(xiàn)在做題的反思與回顧更為重要,否則做再多的題也沒有用。
誤區(qū)
最后一個(gè)月家長帶孩子盲目補(bǔ)課
-現(xiàn)象:
最后一個(gè)月,有些家長不惜重金,不惜時(shí)間,給孩子找名師、專家補(bǔ)課,甚至請假參加一對一輔導(dǎo)等,希望可以為孩子提分。
-專家觀點(diǎn):
“不建議補(bǔ)課,尤其不建議盲目補(bǔ)課。如果明確知道孩子的弱項(xiàng),比如哪一科的哪一部分知識點(diǎn)有不足,可以非常有針對性地進(jìn)行補(bǔ)習(xí),請老師幫忙解決實(shí)際問題。否則很容易起反作用。”
補(bǔ)習(xí)過多課程,尤其最后一個(gè)月找新老師補(bǔ)習(xí),容易打亂考生原有的答題思路。另外,許多考生并不十分清楚自己的問題到底在哪里,想憑幾堂課給孩子大面積提分是不現(xiàn)實(shí)的。“最后30天,應(yīng)該是找準(zhǔn)自己的問題所在,老師就可以幫你解決問題。”
猜你喜歡:
1.中考數(shù)學(xué)知識點(diǎn)總結(jié)大全
2.初中數(shù)學(xué)重點(diǎn)知識總結(jié)