初中數(shù)學(xué)教案設(shè)計(jì)
初中數(shù)學(xué)教案設(shè)計(jì)
在教學(xué)中一份教案是教學(xué)學(xué)生的必備工具,想要教好學(xué)生,請(qǐng)看下文,以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)教案設(shè)計(jì)的資料,希望可以幫到你!
初中數(shù)學(xué)教案篇1
有序數(shù)對(duì)
課型:新授 備課人:霍紅超 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1. 理解有序數(shù)對(duì)的應(yīng)用意義,了解平面上確定點(diǎn)的常用方法
2. 培養(yǎng)用數(shù)學(xué)的意識(shí),激發(fā)學(xué)習(xí)興趣.
學(xué)習(xí)重點(diǎn): 理解有序數(shù)對(duì)的意義和作用
學(xué)習(xí)難點(diǎn): 用有序數(shù)對(duì)表示點(diǎn)的位置
學(xué)習(xí)過程
一.問題導(dǎo)入
1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學(xué)們欣賞下面圖案.
2.地質(zhì)部門在某地埋下一個(gè)標(biāo)志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
3.某人買了一張8排6號(hào)的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。
你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
二.概念確定
有序數(shù)對(duì):用含有兩個(gè)數(shù)的詞表示一個(gè)確定的位置,其中各個(gè)數(shù)表示不同的含義,我們把這種有順序的兩個(gè)數(shù)a與b組成的數(shù)對(duì),叫做有序數(shù)對(duì),記作(a,b)
利用有序數(shù)對(duì),可以很準(zhǔn)確地表示出一個(gè)位置。
1.在教室里,根據(jù)座位圖,確定數(shù)學(xué)課代表的位置
2.教材40頁練習(xí)
三.方法歸類
常見的確定平面上的點(diǎn)位置常用的方法
(1)以某一點(diǎn)為原點(diǎn)(0,0)將平面分成若干個(gè)小正方形的方格,利用點(diǎn)所在的行和列的位置來確定點(diǎn)的位置。
(2)以某一點(diǎn)為觀察點(diǎn),用方位角、目標(biāo)到這個(gè)點(diǎn)的距離這兩個(gè)數(shù)來確定目標(biāo)所在的位置。
1.如圖,A點(diǎn)為原點(diǎn)(0,0),則B點(diǎn)記為(3,1)
2.如圖,以燈塔A為觀測點(diǎn),小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對(duì)峙示意圖,對(duì)我方艦艇來說:
(1)北偏東方向上有哪些目標(biāo)?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個(gè)數(shù)據(jù)?
[鞏固練習(xí)]
1. 如圖是某城市市區(qū)的一部分示意圖,對(duì)市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學(xué)校分別位于市政府的什么方向,怎樣確定他們的位置?
結(jié)合實(shí)際問題歸納方法
學(xué)生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達(dá)的位置。
[小結(jié)]
1. 為什么要用有序數(shù)對(duì)表示點(diǎn)的位置,沒有順序可以嗎?
2. 幾種常用的表示點(diǎn)位置的方法.
[作業(yè)]
必做題:教科書44頁:1題
初中數(shù)學(xué)教案篇2
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展推理能力和有條理表達(dá)能力.
2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想
學(xué)習(xí)重難點(diǎn):探索并掌握直線平行的條件是本課的重點(diǎn)也是難點(diǎn).
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯(cuò)角也相等.( )
2.兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角互補(bǔ),那么同旁內(nèi)角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_(dá)______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.
五、作業(yè)課本15頁-16頁練習(xí)的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展空
間觀念,推理能力和有條理表達(dá)能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進(jìn)行說理.
學(xué)習(xí)重點(diǎn):直線平行的條件的應(yīng)用.
學(xué)習(xí)難點(diǎn):選取適當(dāng)判定直線平行的方法進(jìn)行說理是重點(diǎn)也是難點(diǎn).
一、學(xué)習(xí)過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個(gè)合格的變形管道ABCD需要AB邊與CD邊平行,若一個(gè)拐角∠ABC=72°,則另一個(gè)拐角∠BCD=_______時(shí),這個(gè)管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因?yàn)?ang;1=∠4,所以DE∥AB
B.因?yàn)?ang;2=∠3,所以AB∥EC
C.因?yàn)?ang;5=∠A,所以AB∥DE
D.因?yàn)?ang;ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點(diǎn)B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
初中數(shù)學(xué)教案篇3
學(xué)習(xí)目標(biāo)
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.
4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用.
設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實(shí)際問題
學(xué)習(xí)過程
一、 溫故知新:
(學(xué)生活動(dòng))同學(xué)們口答下面兩個(gè)問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?
二、 自主學(xué)習(xí):
自學(xué)教材P90---P93,思考下列問題:
1、 什么叫圓周角?圓周角的兩個(gè)特征: 。
2、 在下面空里作一個(gè)圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.
(1)一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)?
(2).同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化?
(3).同弧上的圓周角與圓心角有什么關(guān)系?
3、默寫圓周角定理及推論并證明。
4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?
5、教材92頁思考?在同圓或等圓中,如果兩個(gè)圓周角相等,它們所對(duì)的弧一定相等嗎?為什么?
三、 典型例題:
例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關(guān)系?為什么?
四、 鞏固練習(xí):
1、(教材P93練習(xí)1)
解:
2、(教材P93練習(xí)2)
3、(教材P93練習(xí)3)
證明:
4、(教材P95習(xí)題24.1第9題)
五、 總結(jié)反思:
達(dá)標(biāo)檢測
1.如圖1,A、B、C三點(diǎn)在⊙O上,∠AOC=100°,則∠ABC等于( ).
A.140° B.110° C.120° D.130°
(1) (2) (3)
2.如圖2,∠1、∠2、∠3、∠4的大小關(guān)系是( )
A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2
3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于( )
A.100° B.110° C.120° D.130°
4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對(duì)的圓周角的度數(shù)是________.
5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點(diǎn),則∠1+∠2=_______.
(4) (5)
6.(中考題)如圖5, 于 ,若 ,則
7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.
拓展創(chuàng)新
1.如圖,已知AB=AC,∠APC=60°
(1)求證:△ABC是等邊三角形.
(2)若BC=4cm,求⊙O的面積.
3、教材P95習(xí)題24.1第12、13題。
布置作業(yè)教材P95習(xí)題24.1第10、11題。