七年級上冊數學《有理數的加減》教案范文五篇
師愛,能成就孩子的未來;施愛,是教師邁向成功的階梯!下面是小編給大家準備的七年級上冊數學《有理數的加減》教案范文,希望可以幫助到大家。
七年級上冊數學《有理數的加減》教案范文一
教學目標
1.理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;
2.能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區(qū)別;
3.三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;
4.通過有理數加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
5.本節(jié)課通過行程問題說明有理數的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節(jié)教學的重點是依據有理數的加法法則熟練進行有理數的加法運算。難點是有理數的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。
(二)知識結構
(三)教法建議
1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。
2.有理數的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
5.可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。
6.在探討導出有理數的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。
教學設計示例
有理數的加法(第一課時)
教學目的
1.使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行有理數的加法運算.
2.通過有理數的加法運算,培養(yǎng)學生的運算能力.
教學重點與難點
重點:熟練應用有理數的加法法則進行加法運算.
難點:有理數的加法法則的理解.
教學過程
(一)復習提問
1.有理數是怎么分類的?
2.有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?
3.有理數大小比較是怎么規(guī)定的?下列各組數中,哪一個較大?利用數軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學有理數的加法運算.
(三)進行新課 有理數的加法(板書課題)
例1 如圖所示,某人從原點0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數相加有以下三種情況:
1.同號兩數相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.
總之,同號兩數相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
2.異號兩數相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數的兩個數相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)=-2.
請同學們想一想,異號兩數相加的法則是怎么規(guī)定的?強調和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.
例如(-8)+5……絕對值不相等的異號兩數相加
8>5
(-8)+5=-( )……取絕對值較大的加數符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+5=-3.
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
3.一個數和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數同0相加,仍得這個數.
總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.
有理數加法運算的三種情況:
特例:兩個互為相反數相加;
(3)一個數和零相加.
每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值.
.(強調“兩個較大”“一個較小”)
解:#FormatImgID_13#解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
1.計算(口答)
(1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.計算
(1)5+(-22);(2)(-1.3)+(-8)
(3)(-0.9)+1.5;(4)2.7+(-3.5)
七年級上冊數學《有理數的加減》教案范文二
一、學生起點分析
學生的知識技能基礎:學生在小學已經學習過算術四則運算,而初中的有理數運算是以小學算術四則運算為基礎的,不同的是有理數運算多了一個符號問題。符號法則是有理數運算法則的重要組成部分,也是學生學習本章知識和今后學習其他與計算有關的內容時容易出錯的知識點之一。
學生活動經驗基礎:在前面相關知識的學習過程中,學生已經經歷了一些數學活動,感受到了數的范圍的擴大,能借助生活經驗對一些簡單的實際問題進行有理數的運算,如計算比賽的得分,計算溫差等等。同時在以前的數學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定數學交流的能力。
學生學習中的困難預設:學生學習數學是一種認識過程,要遵循一般的認識規(guī)律,而七年級的學生,對異號兩數相加從未接觸過,與小學加法比較,思維強度增大,需要通過絕對值大小的比較來確定和的符號和加法轉化為減法兩個過程,要求學生在課堂上短時間內完成這個認識過程確有一定的難度,在教學時應從實例出發(fā),充分利用教材中的正負抵消的思想,用數形結合的觀點加以解釋,讓學生感知法則的由來,以突破這一難點。
二、教學任務分析
對于有理數的運算,首先在于運算的意義的理解,即首先要回答為什么要進行運算。為此,必須讓學生通過具體的問題情境,認識到運算的作用,加深學生對運算本身意義的理解,同時也讓學生體會到運算的應用,從而培養(yǎng)學生一定的應用意識和能力。教科書基于學生學習了相反數和絕對值基礎之上,提出了本課時的具體學習任務:探索有理數的加法運算法則,進行有理數的加法運算。本課時的教學重點是有理數加法法則的探索過程,利用有理數的加法法則進行計算,教學難點是異號兩數相加的法則。教學方法是“引導——分類——歸納”。本課時的教學目標如下:
1.經歷探索有理數加法法則的過程,理解有理數的加法法則;
2.能熟練進行整數加法運算;
3.培養(yǎng)學生的數學交流和歸納猜想的能力;
4.滲透分類、探索、歸納等思想方法,使學生了解研究數學的一些基本方法。
三、教學過程設計
本課時設計了六個教學環(huán)節(jié):第一環(huán)節(jié):復習引入,提出問題;第二環(huán)節(jié):活動探究,猜想結論;第三環(huán)節(jié):驗證明確結論;第四環(huán)節(jié):運用鞏固;第五環(huán)節(jié):課堂小結;第六環(huán)節(jié):布置作業(yè)。
(一)復習引入,提出問題
活動內容:
1.復習提問:
(1)下列各組數中,哪一個較大?
(2)一位同學在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現在的位置位于出發(fā)點的哪個方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負,該問題用算式表示為 。
活動目的:我們已經熟悉正數的運算,然而實際問題中做加法運算的數有可能超出正數范圍。這里先讓學生回顧在具體問題中感受正數和負數的加法運算。
2.提出問題:
某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分.
如果我們用1個 表示+1,用1個 ,那么 就表示0,同樣 也表示0.
(1)計算(-2)+(-3).
在方框中放進2個 和3個 :
因此,(-2)+(-3)= -5.
用類似的方法計算(2)(-3)+ 2
(3) 3 +(-2)
(4) 4+(-4)
思考: 兩個有理數相加,還有哪些不同的情形?舉例說明。
引導學生列舉兩個正數相加,如3 + 2,一個數和零相加,如0+(-4),4 + 0。
活動目的:通過實際問題情境類比列出兩個有理數相加的7種不同情形,兩個正數相加、兩個負數相加,異號兩數相加(根據絕對值又可分為三類)、一個加數為0。進而討論如何進行一般的有理數加法的運算。
活動的實際效果: 實際問題情境為學生營造了良好的學習氛圍,利于他們積極探究.
(二)活動探究,猜想結論:
上面我們列出了兩個有理數相加的7種不同情形,并根據它們的具體意義得出了它們相加的和.但是,要計算兩個有理數相加所得的和,我們總不能一直用這種方法.現在請同學們仔細觀察比較這7個算式,你能從中發(fā)現有理數加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?
學生分組進行活動,教師關注學生在活動中的表現,可以根據學生的實際情況給予適當點撥和引導,鼓勵學生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認識。
對“一起探究”,教師可引導學生按以下步驟思考:
1、觀察列出的具體算式,根據兩個加數的符號分類:兩個正數相加、兩個負數相加,異號兩數相加(根據絕對值又可分為三類)、一個加數為0。
2、同號兩數相加時,和的符號與兩個加數的符號有怎樣的關系?和的絕對值和加數的絕對值有怎樣的關系?異號兩數相加時和的符號與兩個加數的符號有怎樣的關系?和的絕對值和加數的絕對值有怎么樣的關系?有一個加數為0時,和是什么?
3、從中歸納概括出規(guī)律
在學生探究的基礎上,教師引出規(guī)定的加法法則。
在活動中,盡可能讓學生獨立完成,必要時可以交流,教師只在適當的時候給予幫助。
同號兩數相加,取相同的符號,并把絕對值相加。
異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
一個數同0相加,仍得這個數。
活動目的:利用分組討論、分類歸納幫助學生理解加法運算過程,同時有利于加法運算法則的歸納。
活動的實際效果:由于采用了圖示的教學手段,在教師的引導下讓學生分類觀察,發(fā)現規(guī)律,用自己的語言表達規(guī)律,最后由學生對規(guī)律進行歸納總結補充,從而得出有理數的加法法則.通過實際問題情境,讓學生親身參加了探索發(fā)現,獲取知識和技能的全過程。理解有理數加法法則規(guī)定的合理性,培養(yǎng)了學生的分類和歸納概括的能力。
(三)驗證明確結論:
例1 計算下列算式的結果,并說明理由:
(1) 180 +(-10) (2) (-10)+(-1);
(3)5+(-5); (4) 0+(-2)
活動目的:給學生提供示范,進行有理數加法,可以按照“一觀察,二確定,三求和”的步驟進行,一觀察是指觀察兩個加數是同號還是異號,二確定是指確定“和”的符號,三求和是指計算“和”的絕對值.
活動的實際效果:通過習題,加深了學生對有理數加法法則的理解。
(四)運用鞏固:
活動內容:
1. 口答下列算式的結果
(1) (+4)+(+3); (2) (-4)+(-3);
(3)(+4)+(-3); (4) (+3)+(-4);
(5)(+4)+(-4); (6) (-3)+0
(7) 0+(+2); (8) 0+0.
活動目的:通過這組練習,讓學生進一步鞏固有理數加法的法則,達到熟練程度。
2.請同學們完成書上的隨堂練習:
(1)(-25)+(-7); (2)(-13)+5;
(3)(-23)+0; (4)45+(-45)
全班學生書面練習,四位學生板演,教師對學生板演進行講評.
活動目的:習題的配備上,注意到學生的思維是一個循序漸進的過程,所以由易到難,使學生在練習的過程中能夠逐步地提高能力,得到發(fā)展。
活動的實際效果: 通過練習進一步熟悉有理數的加法法則。通過口答、演排糾錯,活躍課堂氣氛,充分調動學生的積極性,學生在一種比較活躍的氛圍中,解決各種(五)課堂小結:
活動內容:師生共同總結。
1. 兩個有理數相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號,最后確定和的絕對值
2. 有理數加法法則及其應用。
3. 注意異號的情況。
活動目的:課堂小結并不只是課堂知識點的回顧,要盡量讓學生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學,更要有所思考,達到對所學知識鞏固的目的。
活動的實際效果: 學生對“一觀察,二確定,三求和”的步驟印象較深,達到了本節(jié)課的教學目標。
七年級上冊數學《有理數的加減》教案范文三
教學目的和要求:
1.使學生了解有理數加法的意義。
2.使學生理解有理數加法的法則,能熟練地進行有理數加法運算。
3.培養(yǎng)學生分析問題、解決問題的能力,在有理數加法法則的教學過程中,注意培養(yǎng)學生的觀察、比較、歸納及運算能力。(在教學中適當滲透分類討論思想)
教學重點和難點:
重點:理解有理數加法法則,運用有理數加法法則進行有理數加法運算。
難點:理解有理數加法法則,尤其是異號兩數相加的情形。
教學工具和方法:
工具:應用投影儀,投影片。
方法:分層次教學,講授、練習相結合。(采取合作探究式教學方法,讓學生在合作學習中學習知識,掌握方法。)
教學過程:
一、復習引入:
1.在小學里,已經學過了正整數、正分數(包括正小數)及數0的四則運算?,F在引入了負數,數的范圍擴充到了有理數。那么,如何進行有理數的運算呢?
2.問題:[
一位同學沿著一條東西向的跑道,先走了20米,又走了30米,能否確定他現在位于原來位置的哪個方向,相距多少米?
我們知道,求兩次運動的總結果,可以用加法來解答??墒巧鲜鰡栴}不能得到確定答案,因為問題中并未指出行走方向。(大部分同學都會用小學學過的的知識來完成。先給予肯定,鼓勵同學們對小學知識的掌握程度,再鼓勵同學們想想還有沒有其他情況)
[來源:學#科#網]
二、講授新課:
1.發(fā)現、總結(分類):
我們必須把問題說得明確些,并規(guī)定向東為正,向西為負。
(同號兩數相加法則)
(1)若兩次都是向東走,很明顯,一共向東走 了50米,寫成算式就是: (+20)+(+30)=+50,
即這位同學位于原來位置的東方50米處。這一運算在數軸上表示如圖:
(2)若兩次都是向西走,則他現在位于原來位置的西方50米處,
寫成算式就是: (―20)+(―30)=―50。
(師生共同歸納同號兩數相加法則:[來源:Z+··+k.Com]
同號兩數相加,取相同的符號,并把絕對值相加)
(異號兩數相加法則)
(3)若第一次向東走20米,第二次向西走30米,我們先在數軸上表示如圖:
寫成算式是(+20)+(―30)=―10,即這位同學位于原來位置的西方10米處。
(4)若第一次向西走20米,第二次向東走30米,寫成算式是:(―20)+(+30)=( )。即這位同學位于原來位置的( )方( )米處。
后兩種情形中,兩個加數符號不同(通??煞Q異號),所得和的符號似乎不能確定,讓我們再試幾次(下式中的加數不妨仍可看作運動的方向和路程):
你能發(fā)現和與兩個加數的符號和絕對值之間有什么關系嗎?
(+4)+(―3)=( ); (+3)+(―10)=( );
(―5)+(+7)=( ); (―6)+ 2 = ( )。
再看兩種特殊情形:
(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)=( )。
(6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+ 0 =( )。我們不難得出它們的結果。
(師生共同歸納異號兩數相加法則:
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值)
(互為相反數的兩數相加為零
問題:會不會出現和為0的情況?
(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)= ( )。
師生共同歸納法則3:互為相反數的兩數相加得0)
問題:你能有法則來解釋法則3嗎?
學生回答:可以用異號兩數相加的法則)
((6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+0= ( )。我們不難得出它們的結果。
一般地,一個數同0相加,仍得這個數)
2.概括:
綜合以上情形,我們得到有理數的加法法則:
(1) 同號兩數相加,取相同的符號,并把絕對值相加;
(2) 絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;
(3) 互為相反數的兩個數相加得0;
(4)一個數同0相加,仍得這個數.
注意:
一個有理數由符號和絕對值兩部分組成,所以進行加法運算時,必須分別確定和的符號和絕對值.這與小學階段學習加法運算不同。
3.例題:
例:計算:
(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。
解:(1)解原式=―(11―2)=―9;
(2)解原式=+(20+12)=+32=32;
(3)解原式=;
(4)解原式= +(4.3―3.4)=0.9。
4.五分鐘測試:
計算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。
三、課堂小結:
這節(jié)課我們從實例出發(fā),經過比較、歸納,得出了有理數加法的法則.今后我們經常要用類似的思想方法研究其他問題.
應用有理數加法法則進行計算時,要同時注意確定“和”的符號、計算“和”的絕對值兩件事。
(運算的關鍵:先分類,在按法則運算
運算步驟:先確定符號,再計算絕對值
注意問題:要借助數軸來進一步驗證有理數的加法法則)
四、課堂作業(yè):
課本:P18:1,2,3。
板書設計:
教學后記:
略
七年級上冊數學《有理數的加減》教案范文四
1.熟練地進行有理數加減混合運算,并利用運算律簡化運算;
2. 培養(yǎng)學生的運算能力。
加減運算法則和加法運算律。
省略加號與括號的計算。
電腦、投影儀
一、從學生原有認知結構提出問題
說出-6+9-8-7+3兩種讀法.
二、解決問題
1.計算:(1)-12+11-8+39; (2)+45-9-91+5;
(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;
2.用較簡便方法計算:
-16+25+16-15+4-10.
三、應用、拓展
例1.計算:2/3-1/8-(-1/3)+(-3/8)
練一練:1.P46第1題(1)-(4)題;P46問題解決
例2.當a=13,b=-12.1,c=-10.6,d=25.1時,求下列代數式的值:
(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;
(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;
(9)(a-c)-(b-d); (10)a-c-b+d.
請同學們觀察一下計算結果,可以發(fā)現什么規(guī)律?
練一練:1.當a=2.7,b=-3.2,c=-1.8時,求下列代數式的值:
(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.
2.分別根據下列條件求代數式·-y-z+w的值:
(1)·=-3,y=-2,z=0,w=5;
(2)·=0.3,y=-0.7,z=1.1,w=-2.1;
七年級上冊數學《有理數的加減》教案范文五
學習目標:
1、理解加減法統(tǒng)一成加法運算的意義.
2、會將有理數的加減混合運算轉化為有理數的加法運算.
3、培養(yǎng)學習數學的興趣,增強學習數學的信心.
學習重點、難點:有理數加減法統(tǒng)一成加法運算
教學方法:講練相結合
教學過程
一、學前準備
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米
記作 +4.5千米 —3.2千米 +1.1千米 —1.4千米
請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了 千米.
2、你是怎么算出來的,方法是
二、探究新知
1、現在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉化為 .再把加號記在腦子里,省略不寫
如:(-20)+(+3)-(-5)-(+7) 有加法也有減法
=(-20)+(+3)+(+5)+(-7) 先把減法轉化為加法
= -20+3+5-7 再把加號記在腦子里,省略不寫
可以讀作:“負20、正3、正5、負7的 ”或者“負20加3加5減7”.
4、師生完整寫出解題過程
三、解決問題
1、解決引例中的問題,再比較前面的方法,你的感覺是
2、例題:計算-4.4-(-4 )-(+2 )+(-2 )+12.4
3、練習:計算 1)(—7)—(+5)+(—4)—(—10)
三、鞏固
1、小結:說說這節(jié)課的收獲
2、P241、2
3、計算
1)27—18+(—7)—32 2)
四、作業(yè)
1、P255 2、P26第8題、14題