不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 通用學習方法 > 復習方法 > 初中等角三角形綜合知識歸納

初中等角三角形綜合知識歸納

時間: 欣怡1112 分享

初中等角三角形綜合知識歸納

  幾何可以說占了初中數學的半壁江山,囊括了包括等角三角形在內的無數重點知識、難點知識、無數的中考考點。為此,以下是學習啦小編分享給大家的初中等角三角形綜合知識,希望可以幫到你!

  初中等角三角形綜合知識

  第一章 圖形的初步認識

  考點一、線段垂直平分線,角的平分線,垂線

  1、線段垂直平分線的性質定理及逆定理

  垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。

  線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。 逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  2、角的平分線及其性質

  一條射線把一個角分成兩個相等的角,這條射線叫做這個角的平分線。 角的平分線有下面的性質定理:

  (1)角平分線上的點到這個角的兩邊的距離相等。

  (2)到一個角的兩邊距離相等的點在這個角的平分線上。

  3垂線的性質:

  性質1:過一點有且只有一條直線與已知直線垂直。

  性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。 考點二、平行線

  1、平行線的概念

  在同一個平面內,不相交的兩條直線叫做平行線。同一平面內,兩條直線的位置關系只有兩種:相交或平行。

  4、平行線的性質

  (1)兩直線平行,同位角相等;(2)兩直線平行,內錯角相等;(3)兩直線平行,同旁內角互補。

  考點三、投影與視圖

  1、投影

  投影的定義:用光線照射物體,在地面上或墻壁上得到的影子,叫做物體的投影。 平行投影:由平行光線(如太陽光線)形成的投影稱為平行投影。

  中心投影:由同一點發(fā)出的光線所形成的投影稱為中心投影。

  2、視圖

  當我們從某一角度觀察一個實物時,所看到的圖像叫做物體的一個視圖。物體的三視圖特指主視圖、俯視圖、左視圖。

  主視圖:在正面內得到的由前向后觀察物體的視圖,叫做主視圖。

  俯視圖:在水平面內得到的由上向下觀察物體的視圖,叫做俯視圖。

  左視圖:在側面內得到的由左向右觀察物體的視圖,叫做左視圖,有時也叫做側視圖。

  第二章 三角形

  考點一、三角形

  1、三角形的分類

  三角形按邊的關系分類如下:

  不等邊三角形

  三角形 底和腰不相等的等腰三角形

  等腰三角形

  等邊三角形

  三角形按角的關系分類如下:

  直角三角形(有一個角為直角的三角形)

  三角形 銳角三角形(三個角都是銳角的三角形)

  斜三角形

  鈍角三角形(有一個角為鈍角的三角形)

  把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。

  2、三角形的三邊關系定理及推論

  (1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。

  推論:三角形的兩邊之差小于第三邊。

  3、三角形的內角和定理及推論

  三角形的內角和定理:三角形三個內角和等于180°。

  推論:

 ?、僦苯侨切蔚膬蓚€銳角互余。

 ?、谌切蔚囊粋€外角等于和它不相鄰的來兩個內角的和。

 ?、廴切蔚囊粋€外角大于任何一個和它不相鄰的內角。

  注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。

  4、三角形的面積

  三角形的面積=1×底×高 2

  考點二、全等三角形

  1、全等三角形的概念

  能夠完全重合的兩個三角形叫做全等三角形。。

  2、三角形全等的判定

  三角形全等的判定定理:

  (1)邊角邊定理:有兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS ”)

  (2)角邊角定理:有兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA ”)

  (3)邊邊邊定理:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS ”)。 直角三角形全等的判定:

  對于特殊的直角三角形,判定它們全等時,還有HL 定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL ”)

  3、全等變換

  只改變圖形的位置,不改變其形狀大小的圖形變換叫做全等變換。

  全等變換包括一下三種:

  (1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。

  (2)對稱變換:將圖形沿某直線翻折180°,這種變換叫做對稱變換。

  (3)旋轉變換:將圖形繞某點旋轉一定的角度到另一個位置,這種變換叫做旋轉變換。 考點三、等腰三角形

  1、等腰三角形的性質

  (1)等腰三角形的性質定理及推論:

  定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)

  推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

  推論2:等邊三角形的各個角都相等,并且每個角都等于60°。

  2、三角形中的中位線

  連接三角形兩邊中點的線段叫做三角形的中位線。

  (1)三角形共有三條中位線,并且它們又重新構成一個新的三角形。

  (2)要會區(qū)別三角形中線與中位線。

  三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

  三角形中位線定理的作用:

  位置關系:可以證明兩條直線平行。

  數量關系:可以證明線段的倍分關系。

  常用結論:任一個三角形都有三條中位線,由此有:

  結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。

  結論2:三條中位線將原三角形分割成四個全等的三角形。

  結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。

  結論4:三角形一條中線和與它相交的中位線互相平分。

  結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

  第三章 解直角三角形

  考點一、直角三角形的性質

  1、直角三角形的兩個銳角互余

  2、在直角三角形中,30°角所對的直角邊等于斜邊的一半。

  3、直角三角形斜邊上的中線等于斜邊的一半

  4直角三角形兩直角邊a ,b 的平方和等于斜邊c 的平方,即

  a 2+b 2=c 2

  5、攝影定理

  在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中

  項,每條直角邊是它們在斜邊上的攝影和斜邊的比例中項

  ∠ACB=90

  CD 2=AD ∙BD

  AC 2=AD ∙AB

  CD ⊥BC 2=BD ∙AB

  6、常用關系式

  由三角形面積公式可得:

  AB ∙CD=AC∙BC

  考點二、銳角三角函數的概念 (3~8分)

  1、如圖,在△ABC 中,∠C=90°

  ①sin A =∠A 的對邊a = 斜邊c

  ∠A 的鄰邊b = 斜邊c ②cos A =

 ?、踭an A =∠A 的對邊a = ∠A 的鄰邊b

  ∠A 的鄰邊b =

  ∠A 的對邊a ④cot A =

  (1)互余關系:sinA=cos(90°—A) ,cosA=sin(90°—A) ,tanA=cot(90°—A) ,cotA=tan(90°—A)

  (2)平方關系:sin A +cos A =1

  (3)倒數關系:tanA ∙tan(90°—A)=1

  (4)弦切關系:tanA=22sin A cos A

  初中等角三角形做題技巧

  一般來說考試中線段和角相等需要證明兩個三角形全等,故我們可以采取逆思維的方式。來想要證全等,則需要什么(AAS/ASA/SAS等)。在我看來,覺得先邊看題邊看圖,做到數形結合,弄明白題意,找出我們要求解的實質的問題。例如要我們求線段相等或角相等,我們就要轉化成證明兩個三角形全等。我覺得分析題意很重要,一定要使學生學會分析,就如“授之以魚不如授之以漁。”

  我們已經具備了有關線的初步知識,轉而探索具有更美妙、更復雜性質的形。對于三角形,一方面要研究一個圖形中不同元素(邊、角)間的性質,另一方面要關注兩個圖形間的關系。兩個圖形關系的有關全等的內容,則是平面幾何中的一個重點,是證明線段相等、角相等以及面積相等的有力工具。那么如何學好三角形全等的證明呢?這就要勤思考,小步走,進行由易到難的訓練,實現由模仿證明到獨立推理、由實(題目已有現成圖形)到虛(要自己畫圖形或需要添加輔助線)的升華。具體可分為三步走:

  第一步,學會解決只證一次全等的簡單問題,重在模仿。這期間要注意模仿課本例題的證明,使自己的證明格式標準,語言準確,過程簡練。如證明兩個三角形全等,一定要寫出在哪兩個三角形,這既方便批閱者,更為以后在復雜圖形中有意識去尋找需要的全等三角形打下基礎;同時要注意頂點的對應,以防對應關系出錯;證全等所需的三個條件,要用大括號括起來;每一步要填注理由,訓練思維的嚴密性。通過一段時間的訓練,對證明方向明確、內容變化少的題目,要能熟練地獨立證明,切實邁出堅實的第一步。

  第二步,能在一個題目中兩次用全等證明過渡性結論和最終結論,學會分析。在學習直角三角形全等、等腰三角形時逐步加深難度,學會一個題目中兩次證全等,特別要學會用分析法有條不紊地尋找證題途徑,分析法目的性強,條理清楚,結合綜合法,能有效解決較復雜的題目。同時,這時的題目一般都不只一種解法,要力求一題多解,比較優(yōu)劣,總結規(guī)律。

  第三步,學會命題的證明,初步掌握添加輔助線的常用方法。命題的證明可全面錘煉數學語言(包括圖形語言)的運用能力,輔助線則在已知和未知間架起一座溝通的橋梁,這都有一定的難度,切勿放松努力,前功盡棄。同時要熟悉一些基本圖形的性質,如“角平分線+垂直=全等三角形”。證明全等不外乎要邊等、角等的條件,因此在平時學習中就要積累在哪些情況下存在或可推出邊等(或線段等)、角等。爛熟于心,應用起來自然會得心應手。

  只要一步步扎實做好這些工作,就會在“邊邊角角”中發(fā)現幾何的奧妙,大增學習的興趣。通過“以形助數”或“以數解形”即通過抽象思維與形象思維的結合,可以使復雜問題簡單化,抽象問題具體化,從而起到優(yōu)化解題途徑的目的。

  初中三角形輔助線口訣

  圖中有角平分線,可向兩邊作垂線。

  也可將圖對折看,對稱以后關系現。

  角平分線平行線,等腰三角形來添。

  角平分線加垂線,三線合一試試看。

  線段垂直平分線,常向兩端把線連。

  線段和差及倍半,延長縮短可試驗。

  線段和差不等式,移到同一三角去。

  三角形中兩中點,連接則成中位線。

  三角形中有中線,倍長中線得全等。

猜你喜歡:

1.高考數學二輪復習7大專題匯總

2.初三數學復習的詳細計劃有哪些

3.初二數學基本知識匯總

4.初一數學有理數知識點的歸納

5.初三數學總復習

3830921