不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考試卷>

中考數(shù)學(xué)第一輪復(fù)習(xí)題及答案(2)

時間: 思晴925 分享

  中考數(shù)學(xué)第一輪復(fù)習(xí)題答案

  1.A

  2.B 解析:利用反推法解答, 函數(shù)y=(x-1)2-4的頂點坐標(biāo)為(1,-4),其向左平移2個單位長度,再向上平移3個單位長度,得到函數(shù)y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函數(shù)頂點坐標(biāo)為(-1,-1),函數(shù)解析式為y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.

  3.D 4.C 5.C 6.B

  7.k=0或k=-1 8.y=x2+1(答案不唯一)

  9.解:(1)∵拋物線y=-x2+bx+c經(jīng)過點A(3,0),B(-1,0),

  ∴拋物線的解析式為y=-(x-3)(x+1),

  即y=-x2+2x+3.

  (2)∵y=-x2+2x+3=-(x-1)2+4,

  ∴拋物線的頂點坐標(biāo)為(1,4).

  10.B 11.①③④

  12.解:(1)將點O(0,0)代入,解得m=±1,

  二次函數(shù)關(guān)系式為y=x2+2x或y=x2-2x.

  (2)當(dāng)m=2時,y=x2-4x+3=(x-2)2-1,

  ∴D(2,-1).當(dāng)x=0時,y=3,∴C(0,3).

  (3)存在.接連接C,D交x軸于點P,則點P為所求.

  由C(0,3),D(2,-1)求得直線CD為y=-2x+3.

  當(dāng)y=0時,x=32,∴P32,0.

  13.解:(1)將M(-2,-2)代入拋物線解析式,得

  -2=1a(-2-2)(-2+a),

  解得a=4.

  (2)①由(1),得y=14(x-2)(x+4),

  當(dāng)y=0時,得0=14(x-2)(x+4),

  解得x1=2,x2=-4.

  ∵點B在點C的左側(cè),∴B(-4,0),C(2,0).

  當(dāng)x=0時,得y=-2,即E(0,-2).

  ∴S△BCE=12×6×2=6.

 ?、谟蓲佄锞€解析式y(tǒng)=14(x-2)(x+4),得對稱軸為直線x=-1,

  根據(jù)C與B關(guān)于拋物線對稱軸x=-1對稱,連接BE,與對稱軸交于點H,即為所求.

  設(shè)直線BE的解析式為y=kx+b,

  將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,

  解得k=-12,b=-2.∴直線BE的解析式為y=-12x-2.

  將x=-1代入,得y=12-2=-32,

  則點H-1,-32.

  14.(1)證明:∵二次函數(shù)y=mx2+nx+p圖象的頂點橫坐標(biāo)是2,

  ∴拋物線的對稱軸為x=2,即-n2m=2,

  化簡,得n+4m=0.

  (2)解:∵二次函數(shù)y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x1<0

  ∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.

  令x=0,得y=p,∴C(0,p).∴OC=|p|.

  由三角函數(shù)定義,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.

  ∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.

  化簡,得x1+x2x1•x2=-1|p|.

  將x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化簡,得⇒n=p|p|=±1.

  由(1)知n+4m=0,

  ∴當(dāng)n=1時,m=-14;當(dāng)n=-1時,m=14.

  ∴m,n的值為:m=14,n=-1(此時拋物線開口向上)或m=-14,n=1(此時拋物線開口向下).

  (3)解:由(2)知,當(dāng)p>0時,n=1,m=-14,

  ∴拋物線解析式為:y=-14x2+x+p.

  聯(lián)立拋物線y=-14x2+x+p與直線y=x+3解析式得到-14x2+x+p=x+3,

  化簡,得x2-4(p-3)=0.

  ∵二次函數(shù)圖象與直線y=x+3僅有一個交點,

  ∴一元二次方程根的判別式等于0,

  即Δ=02+16(p-3)=0,解得p=3.

  ∴y=-14x2+x+3=-14(x-2)2+4.

  當(dāng)x=2時,二次函數(shù)有最大值,最大值為4.

  15.解:(1)設(shè)此拋物線的解析式為y=a(x-3)2+4,

  此拋物線過點A(0,-5),

  ∴-5=a(0-3)2+4,∴a=-1.

  ∴拋物線的解析式為y=-(x-3)2+4,

  即y=-x2+6x-5.

  (2)拋物線的對稱軸與⊙C相離.

  證明:令y=0,即-x2+6x-5=0,得x=1或x=5,

  ∴B(1,0),C(5,0).

  設(shè)切點為E,連接CE,

  由題意,得,Rt△ABO∽Rt△BCE.

  ∴ABBC=OBCE,即12+524=1CE,

  解得CE=426.

  ∵以點C為圓心的圓與直線BD相切,⊙C的半徑為r=d=426.

  又點C到拋物線對稱軸的距離為5-3=2,而2>426.

  則此時拋物線的對稱軸與⊙C相離.

  (3)假設(shè)存在滿足條件的點P(xp,yp),

  ∵A(0,-5),C(5,0),

  ∴AC2=50,

  AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.

  ①當(dāng)∠A=90°時,在Rt△CAP中,

  由勾股定理,得AC2+AP2=CP2,

  ∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,

  整理,得xp+yp+5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5.

  ∴xp+(-x2p+6xp-5)+5=0,

  解得xp=7或xp=0,∴yp=-12或yp=-5.

  ∴點P為(7,-12)或(0,-5)(舍去).

 ?、诋?dāng)∠C=90°時,在Rt△ACP中,

  由勾股定理,得AC2+CP2=AP2,

  ∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,

  整理,得xp+yp-5=0.

  ∵點P(xp,yp)在拋物線y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5,

  ∴xp+(-x2p+6xp-5)-5=0,

  解得xp=2或xp=5,∴yp=3或yp=0.

  ∴點P為(2,3)或(5,0)(舍去)

  綜上所述,滿足條件的點P的坐標(biāo)為(7,-12)或(2,3).


猜你感興趣:

1.2017年中考數(shù)學(xué)第一輪復(fù)習(xí)模擬題

2.初三數(shù)學(xué)第一輪復(fù)習(xí)教案以及習(xí)題

3.中考數(shù)學(xué)第一輪復(fù)習(xí)應(yīng)注意的事項

4.中考數(shù)學(xué)復(fù)習(xí)計劃

中考數(shù)學(xué)第一輪復(fù)習(xí)題及答案(2)

中考數(shù)學(xué)第一輪復(fù)習(xí)題答案 1.A 2.B 解析:利用反推法解答, 函數(shù)y=(x-1)2-4的頂點坐標(biāo)為(1,-4),其向左平移2個單位長度,再向上平移3個單位長度,得到函數(shù)
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 中考數(shù)學(xué)一模模擬試題及答案
    中考數(shù)學(xué)一模模擬試題及答案

    想要在中考中獲得數(shù)學(xué)的好成績,做題是最好的辦法,但想要奏效,還得靠自己的積累。接下來,學(xué)習(xí)啦小編為你分享中考數(shù)學(xué)一模模擬試題,希望對你有

  • 中考語文一模試卷帶答案
    中考語文一模試卷帶答案

    中考語文的備考,需要同學(xué)們多看書,多做試卷。接下來,學(xué)習(xí)啦小編為你分享中考語文一模試卷帶答案,希望對你有幫助。 中考語文一模試卷第Ⅰ卷 選

  • 中考語文一模試題附答案
    中考語文一模試題附答案

    做中考語文一模試題是檢測復(fù)習(xí)效果的好方法。接下來,學(xué)習(xí)啦小編為你分享中考語文一模試題,希望對你有幫助。 中考語文一模試題:A卷 一、基礎(chǔ)知識

  • 中考語文第一輪復(fù)習(xí)題帶答案
    中考語文第一輪復(fù)習(xí)題帶答案

    中考語文第一輪復(fù)習(xí)正是同學(xué)們?nèi)媸崂碇R的重要階段,此時需要適當(dāng)做些題目來鞏固知識。接下來,學(xué)習(xí)啦小編為你分享中考語文第一輪復(fù)習(xí)題,希望

513