2024年七年級(jí)上冊(cè)數(shù)學(xué)月考試卷
要想學(xué)好知識(shí),就必須大量地做題,那么七年級(jí)上冊(cè)數(shù)學(xué)月考試卷怎么做呢?以下是小編整理的一些關(guān)于七年級(jí)上冊(cè)數(shù)學(xué)月考試卷,僅供參考。
七年級(jí)上冊(cè)數(shù)學(xué)月考試卷及答案
一、選擇題:(每題4分,共48分)
1.﹣3的倒數(shù)是( )
A.﹣B.C.﹣3D.3
【分析】根據(jù)倒數(shù)的定義,若兩個(gè)數(shù)的乘積是1,我們就稱(chēng)這兩個(gè)數(shù)互為倒數(shù).
【解答】解:∵﹣3×(﹣)=1,
∴﹣3的倒數(shù)是﹣.
故選:A.
2.如圖為我縣十二月份某一天的天氣預(yù)報(bào),該天最高氣溫比最低氣溫高( )
A.﹣3℃B.7℃C.3℃D.﹣7℃
【分析】根據(jù)所給圖可知該天的最高氣溫為5℃,最低氣溫為﹣2℃,繼而作差求解即可.
【解答】解:根據(jù)所給圖可知該天的最高氣溫為5℃,最低氣溫為﹣2℃,
故該天最高氣溫比最低氣溫高5﹣(﹣2)=7℃,
故選B.
3.某服裝店新開(kāi)張,第一天銷(xiāo)售服裝a件,第二天比第一天多銷(xiāo)售12件,第三天的銷(xiāo)售量是第二天的2倍少10件,則第三天銷(xiāo)售了( )
A.(2a+2)件B.(2a+24)件C.(2a+10)件D.(2a+14)件
【分析】此題要根據(jù)題意直接列出代數(shù)式,第三天的銷(xiāo)售量=(第一天的銷(xiāo)售量+12)×2﹣10.
【解答】解:第二天銷(xiāo)售服裝(a+12)件,第三天的銷(xiāo)售量2(a+12)﹣10=2a+14(件),故選D.
4.下列各式計(jì)算正確的是( )
A.﹣2a+5b=3abB.6a+a=6a2
C.4m2n﹣2mn2=2mnD.3ab2﹣5b2a=﹣2ab2
【分析】本題考查同類(lèi)項(xiàng)的概念,含有相同的字母,并且相同字母的指數(shù)相同,是同類(lèi)項(xiàng)的兩項(xiàng)可以合并,否則不能合并.合并同類(lèi)項(xiàng)的法則是系數(shù)相加作為系數(shù),字母和字母的指數(shù)不變.
【解答】解:解:A、﹣2a+5b不是同類(lèi)項(xiàng),不能合并.錯(cuò)誤;
B、6a+a=7a,錯(cuò)誤;
C、4m2n﹣2mn2不是同類(lèi)項(xiàng),不能合并.錯(cuò)誤;
D、3ab2﹣5b2a=﹣2ab2.正確.
故選D.
5.已知代數(shù)式3x2﹣6x+6的值為9,則代數(shù)式x2﹣2x+8的值為( )
A.18B.9C.12D.7
【分析】將x2﹣2x當(dāng)成一個(gè)整體,在第一個(gè)代數(shù)式中可求得x2﹣2x=1,將其代入后面的代數(shù)式即能求得結(jié)果.
【解答】解:∵3x2﹣6x+6=9,即3(x2﹣2x)=3,
∴x2﹣2x=1,
∴x2﹣2x+8=1+8=9.
故選B.
6.定義一種新運(yùn)算“__”,規(guī)定:a__b=a﹣4b,則12__(﹣1)=( )
A.﹣8B.8C.﹣12D.11
【分析】按照規(guī)定的運(yùn)算順序,列出算式按照運(yùn)算順序計(jì)算即可.
【解答】解:12__(﹣1)
=×12﹣4×(﹣1)
=4+4
=8.
故選:B.
7.已知x=﹣2是方程ax+4x=2的解,則a的值是( )
A.﹣5B.3C.5D.﹣3
【分析】把x=﹣2代入已知方程求出a的值即可.
【解答】解:把x=﹣2代入方程得:﹣2a﹣8=2,
解得:a=﹣5.
故選A.
8.如果A、B、C三點(diǎn)在同一直線(xiàn)上,線(xiàn)段AB=3cm,BC=2cm,那么A、C兩點(diǎn)之間的距離為( )
A.1cmB.5cmC.1cm或5cmD.無(wú)法確定
【分析】由題意可知,點(diǎn)C分兩種情況,畫(huà)出線(xiàn)段圖,結(jié)合已知數(shù)據(jù)即可求出結(jié)論.
【解答】解:由題意可知,C點(diǎn)分兩種情況,
①C點(diǎn)在線(xiàn)段AB延長(zhǎng)線(xiàn)上,如圖1,
AC=AB+BC=3+2=5cm;
②C點(diǎn)在線(xiàn)段AB上,如圖2,
AC=AB﹣BC=3﹣2=1cm.
綜合①②A、C兩點(diǎn)之間的距離為1cm或5cm.
故選C.
9.下列事實(shí)可以用“兩點(diǎn)確定一條直線(xiàn)”來(lái)解釋的有( )個(gè)
①墻上釘木條至少要兩顆釘子才能牢固;
②農(nóng)民拉繩播秧;
③解放軍叔叔打靶瞄準(zhǔn);
④從A地到B地架設(shè)電線(xiàn),總是盡可能沿著線(xiàn)段AB架設(shè).
A.1B.2C.3D.4
【分析】由題意,認(rèn)真分析題干,用數(shù)學(xué)知識(shí)解釋生活中的現(xiàn)象.
【解答】解:①②③現(xiàn)象可以用兩點(diǎn)可以確定一條直線(xiàn)來(lái)解釋;
④現(xiàn)象可以用兩點(diǎn)之間,線(xiàn)段最短來(lái)解釋.
故選:C.
10.在燈塔O處觀測(cè)到輪船A位于北偏西54°的方向,同時(shí)輪船B在南偏東15°的方向,那么∠AOB的大小為( )
A.69°B.111°C.141°D.159°
【分析】首先計(jì)算出∠3的度數(shù),再計(jì)算∠AOB的度數(shù)即可.
【解答】解:由題意得:∠1=54°,∠2=15°,
∠3=90°﹣54°=36°,
∠AOB=36°+90°+15°=141°,
故選:C.
11.如圖,AB是直線(xiàn),O是直線(xiàn)上一點(diǎn),OC、OD是兩條射線(xiàn),則圖中小于平角的角有( )
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)
【分析】利用角的定義以及結(jié)合圖形得出即可.
【解答】解:圖中小于平角的角有:∠AOC,∠COD,∠BOD,∠AOD,∠COB,共5個(gè).
故選:C.
12.如圖是一個(gè)正方體包裝盒的表面展開(kāi)圖,若在其中的三個(gè)正方形A,B,C內(nèi)分別填上適當(dāng)?shù)臄?shù),使得將這個(gè)表面展開(kāi)圖沿虛線(xiàn)折成正方體后,相對(duì)面上的兩數(shù)互為相反數(shù),則填在A,B,C內(nèi)的三個(gè)數(shù)依次是( )
A.1,0,﹣2B.0,1,﹣2C.0,﹣2,1D.﹣2,0,1
【分析】利用正方體及其表面展開(kāi)圖的特點(diǎn)解題.
【解答】解:圖中圖形折疊成正方體后,A與0對(duì)應(yīng),B與2對(duì)應(yīng),C與﹣1對(duì)應(yīng).故選C.
二、填空題:(每空4分,共40分)
13.若3a4bm+1=﹣a3n﹣2b2是同類(lèi)項(xiàng),則m﹣n= ﹣1 .
【分析】本題考查同類(lèi)項(xiàng)的定義,所含字母相同,相同字母的指數(shù)也相同的項(xiàng)叫做同類(lèi)項(xiàng),由同類(lèi)項(xiàng)的定義可先求得m和n的值,從而求出m﹣n的值.
【解答】解:由同類(lèi)項(xiàng)的定義可知3n﹣2=4且m+1=2,
解得n=2,m=1,
所以m﹣n=﹣1.
14.已知A點(diǎn)在數(shù)軸上對(duì)應(yīng)有理數(shù)a,現(xiàn)將A右移5個(gè)單位長(zhǎng)度后再向左移7個(gè)單位長(zhǎng)度到達(dá)B點(diǎn),B點(diǎn)在數(shù)軸上對(duì)應(yīng)的有理數(shù)為,則有理數(shù)a= .
【分析】設(shè)點(diǎn)A表示的數(shù)為x,根據(jù)左減右加,列出方程,即可解答.
【解答】解:設(shè)點(diǎn)A表示的數(shù)為x,
根據(jù)題意,得:x+5﹣7=﹣,
解得:x=.
故答案為:.
15.計(jì)算21°49′+49°21′= 71°10′ .
【分析】根據(jù)度分秒的加法,相同單位相加,滿(mǎn)60時(shí)向上一單位進(jìn)1,可得答案.
【解答】解:原式=70°70′=71°10′.
故答案為:71°10′.
16.一件服裝標(biāo)價(jià)200元,以6折銷(xiāo)售,可獲利20%,這件服裝的進(jìn)價(jià)是 100 元.
【分析】根據(jù)題意,找出相等關(guān)系為:進(jìn)價(jià)×(1+20%)=200×60%,設(shè)未知數(shù)列方程求解.
【解答】解:設(shè)這件服裝的進(jìn)價(jià)為x元,依題意得:
(1+20%)x=200×60%,
解得:x=100,
則這件服裝的進(jìn)價(jià)是100元.
故答案為100.
17.若關(guān)于x的方程k(x2+1)+x2=x|k|+3為一元一次方程,那么k= ﹣1 .
【分析】只含有一個(gè)未知數(shù)(元),并且未知數(shù)的指數(shù)是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常數(shù)且a≠0).
【解答】解:由k(x2+1)+x2=x|k|+3為一元一次方程,得
|k|=1,且k+1=0.
解得k=﹣1.
故答案為:k=﹣1.
18.已知OC平分∠AOB,若∠AOB=60°,∠COD=10°,則∠AOD的度數(shù)為 20°或40° .
【分析】利用角的和差關(guān)系計(jì)算.根據(jù)題意可得此題要分兩種情況,一種是OD在∠AOC內(nèi)部,另一種是OD∠BOC內(nèi)部.
【解答】解:分兩種情況進(jìn)行討論:
①如圖1,射線(xiàn)OD在∠AOC的內(nèi)部,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵∠AOB=60°,
∴∠AOC=∠BOC=30°,
又∵∠C0D=10°,
∴∠AOD=∠AOC﹣∠C0D=20°;
②如圖2,射線(xiàn)OD在∠COB的內(nèi)部,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵∠AOB=60°,
∴∠AOC=∠BOC=30°,
又∵∠C0D=10°,
∴∠AOD=∠AOC+∠C0D=40°;
綜上所述,∠AOD=20°或40°
故答案為20°或40°.
19.地球上的陸地面積約為149000000平方千米,這個(gè)數(shù)字用科學(xué)記數(shù)法表示應(yīng)為 1.49×108 .
【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯(cuò)點(diǎn),由于149000000有9位,所以可以確定n=9﹣1=8.
【解答】解:149000000=1.49×108,
故答案為:1.49×108.
20.在看中央電視臺(tái)“動(dòng)物世界”節(jié)目時(shí),我們可以看到這樣的畫(huà)面:非洲雄獅在廣闊的草原上捕食鹿時(shí),總是沿直線(xiàn)狂奔,其中蘊(yùn)含的數(shù)學(xué)知識(shí)是 兩點(diǎn)之間,線(xiàn)段最短 .
【分析】根據(jù)線(xiàn)段的性質(zhì)解答.
【解答】解:沿直線(xiàn)狂奔蘊(yùn)含的`數(shù)學(xué)知識(shí)是:兩點(diǎn)之間,線(xiàn)段最短.
故答案為:兩點(diǎn)之間,線(xiàn)段最短.
21.假設(shè)有足夠多的黑白圍棋子,按照一定的規(guī)律排成一行:
請(qǐng)問(wèn)第2010個(gè)棋子是黑的還是白的?答: 黑的 .
【分析】觀察黑白圍棋子排成,可得到每2白2黑1白1黑6個(gè)一組進(jìn)行循環(huán),由于2010=335×6,所以第2013個(gè)棋子與每組的第6顆棋子同色.
【解答】解:黑白圍棋子每6個(gè)一組進(jìn)行循環(huán),
而2010=335×6,
所以第2010個(gè)棋子與第1組的第6顆棋子一樣,即第2010個(gè)棋子是黑的.
故答案為:黑的.
22.下列說(shuō)法中:①若ax=ay,則x=y(其中a是有理數(shù));②若,則a<0;③代數(shù)式﹣3a+10b+3a﹣10b﹣2的值與a,b都無(wú)關(guān);④當(dāng)x=3時(shí),代數(shù)式1+(3﹣x)2有最大值l;⑤若|a|=|﹣9|,則a=﹣9.其中正確的是: ②③ (填序號(hào))
【分析】通過(guò)代數(shù)式的求值,絕對(duì)值的性質(zhì),等式的性質(zhì)進(jìn)行逐項(xiàng)分析解答即可推出結(jié)論.
【解答】解:①若a=0,x、y可取任意值,故本項(xiàng)錯(cuò)誤,
②由題意可知,|a|=﹣a,即可推出a為非正數(shù),結(jié)合a≠0,∴a<0,故本項(xiàng)正確,
③通過(guò)合并同類(lèi)項(xiàng),原式=﹣2,所以代數(shù)式的值與a、b沒(méi)有關(guān)系,故本項(xiàng)正確,
④∵1+(3﹣x)2≥1,∴x=3時(shí),原式=1,∴當(dāng)x=3時(shí),代數(shù)式1+(3﹣x)2有最小值l,故本項(xiàng)說(shuō)法錯(cuò)誤,
⑤由題意可知,|a|=9,所以a=±9,故本項(xiàng)錯(cuò)誤,
所以,綜上所述,②③正確.
故答案為②③.
三.綜合題(62分)
23.計(jì)算:
(1)﹣4﹣28﹣(﹣29)+(﹣24)
(2)﹣32﹣|﹣6|﹣3×(﹣)+(﹣2)2÷
(3)2(a2﹣ab)﹣2a2+3ab.
【分析】(1)原式利用減法法則變形,計(jì)算即可得到結(jié)果;
(2)原式先計(jì)算乘方及絕對(duì)值運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;
(3)原式去括號(hào)合并即可得到結(jié)果.
【解答】解:(1)原式=﹣4﹣28+29﹣24=﹣27;
(2)原式=﹣9﹣6+1+2=﹣12;
(3)原式=2a2﹣2ab﹣2a2+3ab=ab.
24.若|a+2|+(2b﹣4)2=0,求代數(shù)式4(a2b+ab2)﹣2(2a2b﹣1)﹣(2ab2+a2)+2的值.
【分析】原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,利用非負(fù)數(shù)的性質(zhì)求出a與b的值,代入計(jì)算即可求出值.
【解答】解:原式=4a2b+4ab2﹣4a2b+2﹣2ab2﹣a2+2=2ab2﹣a2+4,
∵|a+2|+(2b﹣4)2=0,
∴a+2=0,2b﹣4=0,
解得:a=﹣2,b=2,
則原式=﹣16﹣4+4=﹣16.
25.解方程
(1)4x﹣1=x+2
(2).
【分析】(1)方程移項(xiàng)合并,把x系數(shù)化為1,即可求出解;
(2)方程去括號(hào),去分母,移項(xiàng)合并,把x系數(shù)化為1,即可求出解.
【解答】解:(1)移項(xiàng)合并得:3x=3,
解得:x=1;
(2)去括號(hào)得:﹣+=,即﹣=0,
去分母得:3x+6﹣5=0,
解得:x=﹣.
26.a,b,c三個(gè)數(shù)在數(shù)軸上的位置如圖所示,化簡(jiǎn):|a﹣b|﹣|a+c|﹣|c﹣b|.
【分析】根據(jù)數(shù)軸可以得到a、b、c的大小,a的絕對(duì)值與c的絕對(duì)值的大小,從而可以將|a﹣b|﹣|a+c|﹣|c﹣b|中的絕對(duì)值符號(hào)去掉并化簡(jiǎn).
【解答】解:∵由數(shù)軸可得,a<b<0|c|,< p="">
∴|a﹣b|﹣|a+c|﹣|c﹣b|
=b﹣a+(a+c)﹣(c﹣b)
=b﹣a+a+c﹣c+b
=2b.
27.如圖,D是AB的中點(diǎn),E是BC的中點(diǎn),BE=AC=3cm,求線(xiàn)段DE的長(zhǎng).
【分析】根據(jù)已知求出AC,根據(jù)線(xiàn)段中點(diǎn)求出DB=AB,BE=BC,求出DE=DB+BE=AC,代入求出即可.
【解答】解:∵BE=AC=3cm,
∴AC=15cm,
∵D是AB的中點(diǎn),E是BC的中點(diǎn),
∴DB=AB,BE=BC,
∴DE=DB+BE
=AB+BC
=AC
=15cm
=7.5cm,
即DE=7.5cm.
28.如圖,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.試求∠COE的度數(shù).
【分析】根據(jù)角平分線(xiàn)的定義先求∠BOC的度數(shù),即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.
【解答】解:∵∠AOB=90°,OC平分∠AOB
∴∠BOC=∠AOB=45°(3分)
∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°
∠BOD=3∠DOE(6分)
∴∠DOE=15°(8分)
∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)
故答案為75°.
29.小明家離學(xué)校5千米,放學(xué)后,爸爸從家里出發(fā)去學(xué)校接小明,與此同時(shí)小明從學(xué)校出發(fā)往家走,已知爸爸的速度是6千米/小時(shí),小明的速度是4千米/小時(shí).
(1)爸爸與小明相遇時(shí),爸爸走了多少時(shí)間?
(2)若小明出發(fā)20分鐘后發(fā)現(xiàn)書(shū)本忘帶了,立刻轉(zhuǎn)身以8千米/小時(shí)的速度返回學(xué)校拿到書(shū)本后仍以此速度繼續(xù)往家走.請(qǐng)問(wèn)爸爸與小明相遇時(shí),離學(xué)校還有多遠(yuǎn)?(不計(jì)途中耽擱)
【分析】(1)根據(jù)爸爸的速度是6千米/小時(shí),小明的速度是4千米/小時(shí),小明家離學(xué)校5千米,利用兩人行走的和為5千米列出方程求解即可;
(2)設(shè)爸爸走了y小時(shí),等量關(guān)系是:爸爸y小時(shí)行走的路程+小明以8千米/小時(shí)的速度行走(y﹣)小時(shí)的路程﹣小明以4千米/小時(shí)的速度行走小時(shí)的路程=5千米,依此列出方程求解即可.
【解答】解:(1)設(shè)爸爸走了x小時(shí).
根據(jù)題意,得(6+4)x=5,
解得:x=,
答:爸爸走了小時(shí).
(2)設(shè)爸爸走了y小時(shí),20分鐘=小時(shí),
根據(jù)題意得:6y+8(y﹣)﹣4×=5,
解得:y=,
則5﹣6×=(千米).
答:爸爸與小明相遇時(shí),離學(xué)校還有千米遠(yuǎn).
初一上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
1.有理數(shù):
(1)凡能寫(xiě)成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類(lèi): ① ②
2.數(shù)軸:
數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn).
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2) 絕對(duì)值可表示為: 或 ;絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;
5.有理數(shù)比大?。?/p>
(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.
6.互為倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若 a≠0,那么 的倒數(shù)是 ;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負(fù)倒數(shù).
7. 有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).
10 有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.
11 有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數(shù)除法法則:
除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù), .
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí): (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:
把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:
一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位.
17.有效數(shù)字:
從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.
18.混合運(yùn)算法則:
先乘方,后乘除,最后加減.
初一數(shù)學(xué)新學(xué)期計(jì)劃
一.提前一天或兩天讀一讀要上的課程
要認(rèn)真,要逐字、逐詞、逐句的閱讀,用筆把重點(diǎn)畫(huà)出來(lái),重點(diǎn)加以理解.遇到自己解決不了的問(wèn)題,作出記號(hào),教師講解時(shí)作為聽(tīng)課的重點(diǎn)。
二.課前想一想
對(duì)預(yù)習(xí)中感到困難的問(wèn)題要先思考.如果是基礎(chǔ)問(wèn)題,可以用以前的知識(shí)看看能不能弄通.如果是理解上的問(wèn)題,可以記下來(lái)課上認(rèn)真聽(tīng)講,通過(guò)積極思考去解決.這樣有利于提高對(duì)知識(shí)的理解,養(yǎng)成學(xué)習(xí)數(shù)學(xué)的良好思維習(xí)慣。
三.說(shuō)一說(shuō)
預(yù)習(xí)時(shí)可能感到認(rèn)識(shí)模糊,可以與父母或同學(xué)進(jìn)行討論,在交流與探討中找到正確的答案.力求對(duì)新知識(shí)有個(gè)準(zhǔn)確的概念。
四.寫(xiě)一寫(xiě)
預(yù)習(xí)時(shí)要做學(xué)習(xí)筆記,主要記錄課文的主要內(nèi)容、看書(shū)時(shí)的.初步體會(huì)和心得、讀明白了的問(wèn)題的理解,對(duì)疑難問(wèn)題的記錄和思考等。
五.做一做
預(yù)習(xí)應(yīng)用題,可以用畫(huà)線(xiàn)段的方法幫助理解數(shù)量間的關(guān)系,弄清已知條件和所求問(wèn)題,找到解題的思路.對(duì)于一些有關(guān)圖形方面的問(wèn)題,可以在預(yù)習(xí)中動(dòng)手操作,剪剪拼拼,增加感性認(rèn)識(shí)。
六.補(bǔ)一補(bǔ)
數(shù)學(xué)課新舊知識(shí)間往往存在緊密的聯(lián)系,預(yù)習(xí)時(shí)如發(fā)現(xiàn)學(xué)習(xí)過(guò)的要領(lǐng)有不清楚的地方,一定要在預(yù)習(xí)時(shí)弄明白,并對(duì)舊的知識(shí)加以鞏固和記憶,同時(shí)為學(xué)習(xí)新的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
七.練一練
往往每課時(shí)的例題都是很典型的,預(yù)習(xí)時(shí)應(yīng)把例題都做一遍,加深領(lǐng)悟的能力。如果做題時(shí)出現(xiàn)錯(cuò)誤,要想想錯(cuò)在哪,為什么錯(cuò),怎么改錯(cuò).如果仍是找不到錯(cuò)誤的根源,可在聽(tīng)課時(shí)重點(diǎn)聽(tīng),逐步領(lǐng)會(huì)。
初一數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)方法
1、交流法。學(xué)生進(jìn)入初中后一段時(shí)間后,積累了一些學(xué)習(xí)方法,這時(shí)讓學(xué)生相互交流,介紹各自的學(xué)習(xí)方法。成績(jī)突出的學(xué)生介紹數(shù)學(xué)學(xué)習(xí)方法、體會(huì)、經(jīng)驗(yàn)。這種方法學(xué)生容易接受,氣氛活躍,方法不需成熟,只求有一得,使交流真正起到相互學(xué)習(xí)促進(jìn)的作用。
2、輔導(dǎo)法。通過(guò)以上兩種途徑學(xué)習(xí),多數(shù)學(xué)生的學(xué)習(xí)方法得到了提高,但學(xué)生心理狀態(tài)是互異的,任何一種學(xué)習(xí)方法都不是人人都適合的。
所以針對(duì)個(gè)別學(xué)生的學(xué)習(xí)方法要有目的地指導(dǎo)和咨詢(xún)。這時(shí)就應(yīng)該深入了解學(xué)生學(xué)習(xí)基礎(chǔ),研究學(xué)生認(rèn)識(shí)水平的差異,對(duì)不同學(xué)生的學(xué)習(xí)方法作不同的指導(dǎo)或咨詢(xún)。
尤其是對(duì)后進(jìn)生更應(yīng)特別關(guān)注。許多后進(jìn)生沒(méi)有一個(gè)良好的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法,一般指導(dǎo)對(duì)他們作用甚微,因此必須對(duì)他們采取個(gè)別輔導(dǎo),既輔導(dǎo)知識(shí)也輔導(dǎo)學(xué)法。
因材施教,幫助每一個(gè)學(xué)生真正地去學(xué)習(xí)、真正地會(huì)學(xué)習(xí)、真正地學(xué)習(xí)好,這就是中學(xué)數(shù)學(xué)新課改的宗旨,全面提高全體學(xué)生思想素質(zhì)和文化素質(zhì),數(shù)學(xué)要面向全體學(xué)生。