高考數(shù)學(xué)優(yōu)秀的答題技巧介紹
想要數(shù)學(xué)成績(jī)好,掌握一定的答題技巧才是捷徑,這也是提高高考數(shù)學(xué)成績(jī)的主要渠道。下面是小編分享的高考數(shù)學(xué)優(yōu)秀的答題技巧,一起來(lái)看看吧。
高考數(shù)學(xué)優(yōu)秀的答題技巧
1、考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過(guò)清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
2、沉著應(yīng)戰(zhàn),確保旗開(kāi)得勝,以利振奮精神
良好的開(kāi)端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開(kāi)得勝”的快意,從而有一個(gè)良好的開(kāi)端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門(mén)坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見(jiàn)機(jī)攀高。
3、“內(nèi)緊外松”,集中注意,消除焦慮怯場(chǎng)
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過(guò)重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開(kāi),這叫外松。
4、提高解選擇題的速度、填空題的準(zhǔn)確度。
數(shù)學(xué)選擇題是知識(shí)靈活運(yùn)用,解題要求是只要結(jié)果、不要過(guò)程。因此,逆代法、估算法、特例法、排除法、數(shù)形結(jié)合法……盡顯威力。12個(gè)選擇題,若能把握得好,容易的一分鐘一題,難題也不超過(guò)五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準(zhǔn)、巧”,忌諱“小題大做”。填空題也是只要結(jié)果、不要過(guò)程,因此要力求“完整、嚴(yán)密”。
5、審題要慢,做題要快,下手要準(zhǔn)。
題目本身就是破解這道題的信息源,所以審題一定要逐字逐句看清楚,只有細(xì)致地審題才能從題目本身獲得盡可能多的信息。
找到解題方法后,書(shū)寫(xiě)要簡(jiǎn)明扼要,快速規(guī)范,不拖泥帶水,牢記高考評(píng)分標(biāo)準(zhǔn)是按步給分,關(guān)鍵步驟不能丟,但允許合理省略非關(guān)鍵步驟。答題時(shí),盡量使用數(shù)學(xué)語(yǔ)言、符號(hào),這比文字?jǐn)⑹鲆?jié)省而嚴(yán)謹(jǐn)。
6、保質(zhì)保量拿下中下等題目。
中下題目通常占全卷的80%以上,是試題的主要部分,是考生得分的主要來(lái)源。誰(shuí)能保質(zhì)保量地拿下這些題目,就已算是打了個(gè)勝仗,有了勝利在握的心理,對(duì)攻克高難題會(huì)更放得開(kāi)。
7、要牢記分段得分的原則,規(guī)范答題。
會(huì)做的題目要特別注意表達(dá)的準(zhǔn)確、考慮的周密、書(shū)寫(xiě)的規(guī)范、語(yǔ)言的科學(xué),防止被“分段扣點(diǎn)分”。
高考數(shù)學(xué)的答題思路
1、函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過(guò)建立函數(shù)關(guān)系運(yùn)用函數(shù)的圖像和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題;方程思想,是從問(wèn)題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題轉(zhuǎn)化為方程或不等式模型去解決問(wèn)題。同學(xué)們?cè)诮忸}時(shí)可利用轉(zhuǎn)化思想進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
2、數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問(wèn)題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學(xué)們?cè)诮獯饠?shù)學(xué)題時(shí),能畫(huà)圖的盡量畫(huà)出圖形,以利于正確地理解題意、快速地解決問(wèn)題。
3、特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋€(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
4、極限思想解題步驟
極限思想解決問(wèn)題的一般步驟為:一、對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;二、確認(rèn)這變量通過(guò)無(wú)限過(guò)程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
5、分類討論思想
同學(xué)們?cè)诮忸}時(shí)常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學(xué)們?cè)诜诸愑懻摻忸}時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高考數(shù)學(xué)常用的解題方法
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
猜你感興趣: