關(guān)于人工智能大學的論文(2)
關(guān)于人工智能大學的論文篇二
人工智能控制技術(shù)在電氣傳動中的應用研究
【摘 要】闡述了人工智能控制技術(shù)的發(fā)展概況,介紹了該控制技術(shù)的優(yōu)勢,從模糊控制、神經(jīng)網(wǎng)絡和遺傳算法等方面探討了該技術(shù)的應用特點及發(fā)展前景。
【關(guān)鍵詞】人工智能;神經(jīng)網(wǎng)絡控制;模糊神經(jīng)元控制;自適應神經(jīng)網(wǎng)絡
0 引 言
隨著現(xiàn)代控制理論的發(fā)展,控制器設計的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)(人工神經(jīng)網(wǎng)絡、模糊控制、模糊神經(jīng)網(wǎng)絡、遺傳算法等)所替代。這些方法的共同特點是,需要不同數(shù)量和類型的必須描述系統(tǒng)和特性的“a-priori”知識。該系統(tǒng)具有實現(xiàn)簡單、性能優(yōu)異等優(yōu)勢。
1 人工智能控制技術(shù)的優(yōu)勢
不同人工智能控制通常采用完全不同的方法,但AI控制器,例如神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。這些AI函數(shù)近似器比常規(guī)的函數(shù)估計器具有更多的優(yōu)勢。
(1)它們的設計不需要控制對象的模型(在許多場合,很難得到實際控制對象的精確動態(tài)方程,實際控制對象的模型在控制器設計時往往有很多不確實性因素。
(2)通過適當調(diào)整(根據(jù)響應時間、下降時間、魯棒性能等)它們能提高性能。例如模糊邏輯控制器的上升時間比最優(yōu)PID控制器快1.5倍,下降時間快3.5倍,過沖更小。
人工智能控制器可分為監(jiān)督、非監(jiān)督或增強學習型三種。常規(guī)的監(jiān)督學習型神經(jīng)網(wǎng)絡控制器的拓樸結(jié)構(gòu)和學習算法已經(jīng)定型,這就給這種結(jié)構(gòu)的控制器增加了限制,使得計算時間過長,常規(guī)非人工智能學習算法的應用效果不好。采用自適應神經(jīng)網(wǎng)絡和試探法就能克服這些困難,加快學習過程的收斂速度。常規(guī)模糊控制器的規(guī)則初值和模糊規(guī)則表是既定“a-priori”型,這就使得調(diào)整困難,當系統(tǒng)得不到“a-priori”(既定)信息時,整個系統(tǒng)就不能正常工作。而應用自適應AI控制器,如使用自適應模糊神經(jīng)控制器就能克服這些困難,并且用DSP比較容易實現(xiàn)這些控制器。
2 人工智能在電氣傳動控制中的運用
2.1 人工智能在直流傳動中的運用
2.1.1 模糊邏輯控制應用
主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調(diào)速控制系統(tǒng)中。值得注意的是這兩種控制器都有規(guī)則庫,它是一個if-then模糊規(guī)則集。但Sugeno控制器的典型規(guī)則是“如果x是A,并且y是B,那么Z=f(x,y)”。這里A和B是模糊集;Z=f(x,y)是x,y的函數(shù),通常是輸入變量x,y的多項式。當f是常數(shù),就是零階Sugeno模型,因此Sugeno是Mamdani控制器的特例。Mamdani控制器由下面四個主要部分組成。
1)模糊化實現(xiàn)輸入變量的測量、量化和模糊化。隸屬函數(shù)有多種形式。
2)知識庫由數(shù)據(jù)庫和語言控制規(guī)則庫組成。開發(fā)規(guī)則庫的主要方法是:把專家的知識和經(jīng)歷用于應用和控制目標;建模操作器的控制行動;建模過程;使用自適應模糊控制器和人工神經(jīng)網(wǎng)絡推理機制。
3)推理機制是模糊控制器的核心,能模仿人的決策和推理模糊控制行為。
4)反模糊化實現(xiàn)量化和反模糊化。有很多反模糊化技術(shù),例如,最大化反模糊化,中間平均技術(shù)等。
在許多資料中,介紹了多種被模糊化的控制器,但這應與“充分模糊”控制器完全區(qū)分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實現(xiàn),往往通過改造現(xiàn)有古典控制器得以實現(xiàn),如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數(shù),從而使系統(tǒng)的性能得到提高。控制器參數(shù)的微小變化可能導致特性的極大提高,被模糊化的控制器參數(shù)調(diào)整方法如下:P(ti)=P(ti-1)+kP·CP,I(ti)=I(ti-1)·CI。但若應用“充分”模糊邏輯控制器,系統(tǒng)響應遠遠優(yōu)于FPIC和最優(yōu)古典PI控制器,用于最優(yōu)化常規(guī)控制器的計算時間比模糊化控制器所需的時間多得
多。因此,使用最小配置的FPIC控制器是可能的選擇之一,事實上,這也是用現(xiàn)有驅(qū)動裝置實現(xiàn)的最簡單方法。
2.1.2ANNS的 應用
過去20多年,人工神經(jīng) 網(wǎng)絡(ANNS)在模式識別和信號處理中得到廣泛運用。由于ANNS有一致性的非線性函數(shù)估計器,因此它也可有效地運用于電氣傳動控制領(lǐng)域,其優(yōu)勢是不需要被控系統(tǒng)的數(shù)學模型,一致性很好,對噪音不敏感。 另外,由于ANNS是并行結(jié)構(gòu),它很適合多傳感器輸入運用,如在條件監(jiān)控、診斷系統(tǒng)中能增強決策的可靠性。如果網(wǎng)絡有足夠多的隱藏層和隱藏結(jié)點以及適宜的激勵函數(shù),多層ANN只能實現(xiàn)需要的映射,沒有直接的技術(shù)選擇最優(yōu)隱藏層、結(jié)點數(shù)和激勵函數(shù),通常用嘗試法解決這個問題,反向傳播訓練算法是基本的最快下降法,輸出結(jié)點的誤差反饋回網(wǎng)絡,用于權(quán)重調(diào)整,搜索最優(yōu)。輸出結(jié)點的權(quán)重調(diào)整迭代不同于隱藏結(jié)點的權(quán)重調(diào)整迭代。通過使用反向傳播技術(shù),能得到需要的非線性函數(shù)近似值,該算法包括有學習速率參數(shù),對網(wǎng)絡的特性有很大影響。
反向傳播算法是多層前聵ANN最廣泛使用的學習技術(shù)之一。但有時網(wǎng)絡的收斂速度很慢,改進算法的開發(fā)是一個重要研究領(lǐng)域。英國Aberdeen大學在這方面取得過令人鼓舞的成績,他們把常規(guī)的反向傳播算法和其他AI技術(shù)結(jié)合起來,使得網(wǎng)絡快速收斂,魯棒性更好。值得注意的是在神經(jīng)模糊實現(xiàn)中,有時必須使用不同形式的反向傳播技術(shù),而不是已知的標準形式。反向傳播技術(shù)是在線(Supervised)學習技術(shù),需要充分的輸入-輸出數(shù)據(jù)對,雖然這種限制也可以用另外的方法加以克服,但該方法是離線的。
常規(guī)技術(shù)就能實現(xiàn)簡單的映射,而神經(jīng)網(wǎng)絡能實現(xiàn)更復雜的映射,并且由于它的并行結(jié)構(gòu)這種映射相當快。辯識ANN用于訓練第二個ANN(神經(jīng)控制器,即過程控制器),因此,過程輸出跟隨給定信號,學習過程用的是反向傳播算法。該方法分為二步:第一步,ANN被訓練用來代表控制對象的響應,這需要用到表示控制對象輸出和控制輸入關(guān)系的微分方程。第二步,把ANN用于控制對象模型的辯識方案中。把ANN與控制對象并行連接,每次迭代時,給ANN提供給定信號作為ANN輸入信號。辯識意味著調(diào)整權(quán)重,使ANN輸出信號(即網(wǎng)絡輸出)和控制對象輸出信號(即正輸出)的誤差最小。在辯識階段,全局誤差(即方差之和)以固定時間間隔被計算并與希望的最小值比較。ANN是神經(jīng)控制器被用于訓練以給出需要的控制對象響應。為了訓練這個網(wǎng)絡,在每次采樣輸出時,必須知道誤差(Ec)但僅僅只知道控制對象輸出和希望輸出(由給定輸入決定)的最后誤差,辯識方案中的第一個ANN可將最后誤差Ec反向傳播,用來訓練控制器ANN。在誤差最小化過程中,全局誤差能被最小化到希望的值。經(jīng)過訓練辯識ANNS和控制ANNS,就可以在實時系統(tǒng)中運用被“調(diào)整”的神經(jīng)自適應控制方案。
2.2 人工智能在交流傳動中的應用
2.2.1模糊邏輯的應用
到目前為止,只有兩種運用于人工智能技術(shù)的工業(yè)產(chǎn)品,一是安川矢量變頻器,另一個是日立矢量變頻器。日立公司最近開發(fā)了J300系列IGBT矢量變頻器,功率范圍是5.5~55kW。它的主要特點是使用無傳感器矢量控制算法和強大的自調(diào)整功能。無傳感器磁通矢量控制方案采樣兩相定子電流,在初始自整定階段,電機和負載的慣性以及其他參數(shù)例如定子電感,定子和轉(zhuǎn)子電阻、勵磁電感等參數(shù)被計算。日立公司宣稱這是世界上第一臺使用模糊控制的變頻器。它考慮了電機和系統(tǒng)的特性,轉(zhuǎn)矩計算 軟件在整個頻率范圍保證了轉(zhuǎn)矩的精確控制。變頻器的主要性能指標如下:1Hz時150%或更高的啟動轉(zhuǎn)矩;在3∶1的速度范圍(20到60Hz/16到50Hz),電機不用降低功率使用;速度調(diào)節(jié)比率小。
J300系列變頻器由于使用了高速微處理器和內(nèi)置DSP,因此具有很高的響應速度,轉(zhuǎn)矩響應速度大約可達到0.1s。它使用模糊邏輯控制電機電流和加減速斜率,它能根據(jù)電機負載和制動需要計算加減速的最優(yōu)時間,不需要嘗試進行調(diào)整。模糊邏輯加減速度函數(shù)根據(jù)模糊規(guī)則設定加減速度比例因子和速度,而模糊規(guī)則則用當前值與過載限幅(或其他限幅)值的差值以及電機電流和電壓的梯度作為輸入變量。梯度和差值構(gòu)成四個隸屬函數(shù),兩個隸屬函數(shù)是三角函數(shù),另二個是半梯形。當用常規(guī)的簡單電流限幅控制,變頻器的斜率是步進型的,經(jīng)常引起變頻器跳閘。特別是在減速時。當用模糊邏輯控制時,斜率十分平滑,變頻器假跳閘的現(xiàn)象也消除了。變頻器在風機和泵類的運用最能體現(xiàn)模糊邏輯控制的優(yōu)勢。在這些應用中,不需要恒定的加減速時間或精確的位置控制。需要的是與負載條件有關(guān)的加減速度的最優(yōu)化。模糊控制能實現(xiàn)加減速度的最優(yōu)控制。
AI控制器也能提高直接轉(zhuǎn)矩控制系統(tǒng)的性能,這也是值得深入研究的一個寬廣領(lǐng)域。英國Aberdeen大學的研究人員開發(fā)了基于人工智能的開關(guān)矢量選擇器以及速度、轉(zhuǎn)矩、磁通觀測器等,初步結(jié)果令人鼓舞。
2.2.2神經(jīng)網(wǎng)絡的應用
該系統(tǒng)與常規(guī)控制算法(梯形控制法)相比具有更好的性能,并且大大減少了定位時間,對負載轉(zhuǎn)矩的大范圍變化和非初始速度也有滿意的控制效果。最后值得指出的是現(xiàn)在 發(fā)表的大多數(shù)有關(guān)ANN對各種電機參數(shù)估計的論文,一個共同的特點是,它們都是用多層前饋ANNS,用常規(guī)反向傳播算法,只是學習算
法的模型不同或被估計的參數(shù)不同。
3 結(jié)論
綜上,對人工智能電氣傳動控制技術(shù)進行了回顧,討論了模糊、神經(jīng)和模糊神經(jīng)控制器等人工智能技術(shù)的優(yōu)點。指出了目前使用人工智能技術(shù)的變速傳動工業(yè)產(chǎn)品才剛剛起步,只有兩家公司推出產(chǎn)品。雖然使用人工智能技術(shù)的實際產(chǎn)品和應用還不多,但不久的將來,人工智能技術(shù)在電氣傳動領(lǐng)域?qū)〉弥匾牡匚?,特別是自適應模糊神經(jīng)控制器將在高性能驅(qū)動產(chǎn)品中得到廣泛使用。
看了“關(guān)于人工智能大學的論文”的人還看了:
5.人工智能論文大學
關(guān)于人工智能大學的論文(2)
上一篇:人工智能實現(xiàn)的論文
下一篇:人工智能編程論文