人工智能神經(jīng)網(wǎng)絡(luò)論文
隨著科學(xué)技術(shù)的發(fā)展,人工神經(jīng)網(wǎng)絡(luò)技術(shù)得到了空前的發(fā)展,并且在諸多領(lǐng)域得到了廣泛的應(yīng)用,為人工智能化的發(fā)展提供了強大的動力。以下是學(xué)習(xí)啦小編整理分享的人工智能神經(jīng)網(wǎng)絡(luò)論文的相關(guān)資料,歡迎閱讀!
人工智能神經(jīng)網(wǎng)絡(luò)論文篇一
人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及應(yīng)用
摘要隨著科學(xué)技術(shù)的發(fā)展,人工神經(jīng)網(wǎng)絡(luò)技術(shù)得到了空前的發(fā)展,并且在諸多領(lǐng)域得到了廣泛的應(yīng)用,為人工智能化的發(fā)展提供了強大的動力。人工神經(jīng)網(wǎng)絡(luò)的發(fā)展經(jīng)歷了不同的階段,是人工智能的重要組成部分,并且在發(fā)展過程中形成了自身獨特的特點。文章對人工神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程進(jìn)行回顧,并對其在各個領(lǐng)域的應(yīng)用情況進(jìn)行探討。
關(guān)鍵詞人工神經(jīng)網(wǎng)絡(luò);發(fā)展;應(yīng)用
隨著科學(xué)技術(shù)的發(fā)展,各個行業(yè)和領(lǐng)域都在進(jìn)行人工智能化的研究工作,已經(jīng)成為專家學(xué)者研究的熱點。人工神經(jīng)網(wǎng)絡(luò)就是在人工智能基礎(chǔ)上發(fā)展而來的重要分支,對人工智能的發(fā)展具有重要的促進(jìn)作用。人工神經(jīng)網(wǎng)絡(luò)從形成之初發(fā)展至今,經(jīng)歷了不同的發(fā)展階段,并且在經(jīng)濟、生物、醫(yī)學(xué)等領(lǐng)域得到了廣泛的應(yīng)用,解決了許多技術(shù)上的難題。
1人工神經(jīng)網(wǎng)絡(luò)概述
關(guān)于人工神經(jīng)網(wǎng)絡(luò),到目前為止還沒有一個得到廣泛認(rèn)可的統(tǒng)一定義,綜合各專家學(xué)者的觀點可以將人工神經(jīng)網(wǎng)絡(luò)簡單的概括為是模仿人腦的結(jié)構(gòu)和功能的計算機信息處理系統(tǒng)[1]。人工神經(jīng)網(wǎng)絡(luò)具有自身的發(fā)展特性,其具有很強的并行結(jié)構(gòu)以及并行處理的能力,在實時和動態(tài)控制時能夠起到很好的作用;人工神經(jīng)網(wǎng)絡(luò)具有非線性映射的特性,對處理非線性控制的問題時能給予一定的幫助;人工神經(jīng)網(wǎng)絡(luò)可以通過訓(xùn)練掌握數(shù)據(jù)歸納和處理的能力,因此在數(shù)學(xué)模型等難以處理時對問題進(jìn)行解決;人工神經(jīng)網(wǎng)絡(luò)的適應(yīng)性和集成性很強,能夠適應(yīng)不同規(guī)模的信息處理和大規(guī)模集成數(shù)據(jù)的處理與控制;人工神經(jīng)網(wǎng)絡(luò)不但在軟件技術(shù)上比較成熟,而且近年來在硬件方面也得到了較大發(fā)展,提高了人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)的信息處理能力。
2人工神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程
2.1 萌芽時期
在20世紀(jì)40年代,生物學(xué)家McCulloch與數(shù)學(xué)家Pitts共同發(fā)表文章,第一次提出了關(guān)于神經(jīng)元的模型M-P模型,這一理論的提出為神經(jīng)網(wǎng)絡(luò)模型的研究和開發(fā)奠定了基礎(chǔ),在此基礎(chǔ)上人工神經(jīng)網(wǎng)絡(luò)研究逐漸展開。1951年,心理學(xué)家Hebb提出了關(guān)于連接權(quán)數(shù)值強化的法則,為神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)功能開發(fā)進(jìn)行了鋪墊。之后生物學(xué)家Eccles通過實驗證實了突觸的真實分流,為神經(jīng)網(wǎng)絡(luò)研究突觸的模擬功能提供了真實的模型基礎(chǔ)以及生物學(xué)的依據(jù)[2]。隨后,出現(xiàn)了能夠模擬行為以及條件反射的處理機和自適應(yīng)線性網(wǎng)絡(luò)模型,提高了人工神經(jīng)網(wǎng)絡(luò)的速度和精準(zhǔn)度。這一系列研究成果的出現(xiàn)為人工神經(jīng)網(wǎng)絡(luò)的形成和發(fā)展提供了可能。
2.2 低谷時期
在人工神經(jīng)網(wǎng)絡(luò)形成的初期,人們只是熱衷于對它的研究,卻對其自身的局限進(jìn)行了忽視。Minskyh和Papert通過多年對神經(jīng)網(wǎng)絡(luò)的研究,在1969年對之前所取得的研究成果提出了質(zhì)疑,認(rèn)為當(dāng)前研究出的神經(jīng)網(wǎng)絡(luò)只合適處理比較簡單的線性問題,對于非線性問題以及多層網(wǎng)絡(luò)問題卻無法解決。由于他們的質(zhì)疑,使神經(jīng)網(wǎng)絡(luò)的發(fā)展進(jìn)入了低谷時期,但是在這一時期,專家和學(xué)者也并沒有停止對神經(jīng)網(wǎng)絡(luò)的研究,針對他們的質(zhì)疑也得出一些相應(yīng)的研究成果。
2.3 復(fù)興時期
美國的物理學(xué)家Hopfield在1982年提出了新的神經(jīng)網(wǎng)絡(luò)模型,并通過實驗證明在滿足一定的條件時,神經(jīng)網(wǎng)絡(luò)是能夠達(dá)到穩(wěn)定的狀態(tài)的。通過他的研究和帶動,眾多專家學(xué)者又重新開始了對人工神經(jīng)網(wǎng)絡(luò)方面的研究,推動了神經(jīng)網(wǎng)絡(luò)的再一次發(fā)展[3]。經(jīng)過專家學(xué)者的不斷努力,提出了各種不同的人工神經(jīng)網(wǎng)絡(luò)的模型,神經(jīng)網(wǎng)絡(luò)理論研究不斷深化,新的理論和方法層出不窮,使神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用進(jìn)入了一個嶄新的時期。
2.4 穩(wěn)步發(fā)展時期
隨著人工神經(jīng)網(wǎng)絡(luò)研究在世界范圍內(nèi)的再次興起,我國也迎來了相關(guān)理論研究的熱潮,在人工神經(jīng)網(wǎng)絡(luò)和計算機技術(shù)方面取得了突破性的進(jìn)展。到20世紀(jì)90年代時,國內(nèi)對于神經(jīng)網(wǎng)絡(luò)領(lǐng)域的研究得到了進(jìn)一步的完善和發(fā)展,而且能夠利用神經(jīng)網(wǎng)絡(luò)對非線性的系統(tǒng)控制問題進(jìn)行解決,研究成果顯著。隨著各類人工神經(jīng)網(wǎng)絡(luò)的相關(guān)刊物的創(chuàng)建和相關(guān)學(xué)術(shù)會議的召開,我國人工神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用條件逐步改善,得到了國際的關(guān)注。
隨著人工神經(jīng)網(wǎng)絡(luò)的穩(wěn)步發(fā)展,逐漸建立了光學(xué)神經(jīng)網(wǎng)絡(luò)系統(tǒng),利用光學(xué)的強大功能,提高了人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)能力和自適應(yīng)能力。對非線性動態(tài)系統(tǒng)的控制問題,采取有效措施,提高超平面的光滑性,對其精度進(jìn)行改進(jìn)。之后有專家提出了關(guān)于人工神經(jīng)網(wǎng)絡(luò)的抽取算法,雖然保證了精度,但也加大了消耗,在一定程度上降低了神經(jīng)網(wǎng)絡(luò)的效率,因此在此基礎(chǔ)上又提出了改進(jìn)算法FERNN。混沌神經(jīng)網(wǎng)絡(luò)的發(fā)展也得到了相應(yīng)的進(jìn)步,提高了神經(jīng)網(wǎng)絡(luò)的泛化能力。
3人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用
3.1 在信息領(lǐng)域中的應(yīng)用
人工神經(jīng)網(wǎng)絡(luò)在信息領(lǐng)域中的應(yīng)用主要體現(xiàn)在信息處理和模式識別兩個方面。由于科技的發(fā)展,當(dāng)代信息處理工作越來越復(fù)雜,利用人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)可以對人的思維進(jìn)行模仿甚至是替代,面對問題自動診斷和解決,能夠輕松解決許多傳統(tǒng)方法無法解決的問題,在軍事信息處理中的應(yīng)用極為廣泛[4]。模式識別是對事物表象的各種信息進(jìn)行整理和分析,對事物進(jìn)行辨別和解釋的一個過程,這樣對信息進(jìn)行處理的過程與人類大腦的思維方式很相像。模式識別的方法可以分為兩種,一種是統(tǒng)計模式識別,還有一種是結(jié)構(gòu)模式識別,在語音識別和指紋識別等方面得到了廣泛的應(yīng)用。
3.2 在醫(yī)學(xué)領(lǐng)域的應(yīng)用
人工神經(jīng)網(wǎng)絡(luò)對于非線性問題處理十分有效,而人體的構(gòu)成和疾病形成的原因十分復(fù)雜,具有不可預(yù)測性,在生物信號的表現(xiàn)形式和變化規(guī)律上也很難掌握,信息檢測和分析等諸多方面都存在著復(fù)雜的非線性聯(lián)系,所以應(yīng)用人工神經(jīng)網(wǎng)絡(luò)決解這些非線性問題具有特殊意義[5]。目前,在醫(yī)學(xué)領(lǐng)域中的應(yīng)用涉及到理論和臨床的各個方面,最主要的是生物信號的檢測和自動分析以及專家系統(tǒng)等方面的應(yīng)用。
3.3 在經(jīng)濟領(lǐng)域中的應(yīng)用
經(jīng)濟領(lǐng)域中的商品價格、供需關(guān)系、風(fēng)險系數(shù)等方面的信息構(gòu)成也十分復(fù)雜且變幻莫測,人工神經(jīng)網(wǎng)絡(luò)可以對不完整的信息以及模糊不確定的信息進(jìn)行簡單明了的處理,與傳統(tǒng)的經(jīng)濟統(tǒng)計方法相比具有其無法比擬的優(yōu)勢,數(shù)據(jù)分析的穩(wěn)定性和可靠性更強。
3.4 在其他領(lǐng)域的應(yīng)用
人工神經(jīng)網(wǎng)絡(luò)在控制領(lǐng)域、交通領(lǐng)域、心理學(xué)領(lǐng)域等方面都有很廣泛的應(yīng)用,能夠?qū)Ω唠y度的非線性問題進(jìn)行處理,對交通運輸方面進(jìn)行集成式的管理,以其高適應(yīng)性和優(yōu)秀的模擬性能解決了許多傳統(tǒng)方法無法解決的問題,促進(jìn)了各個領(lǐng)域的快速發(fā)展。
4總結(jié)
隨著科技的發(fā)展,人工智能系統(tǒng)將進(jìn)入更加高級的發(fā)展階段,人工神經(jīng)網(wǎng)絡(luò)也將得到更快的發(fā)展和更加廣泛的應(yīng)用。人工神經(jīng)網(wǎng)絡(luò)也許無法完全對人腦進(jìn)行取代,但是其特有的非線性信息處理能力解決了許多人工無法解決的問題,在智能系統(tǒng)的各個領(lǐng)域中得到成功應(yīng)用,今后的發(fā)展趨勢將向著更加智能和集成的方向發(fā)展。
參考文獻(xiàn)
[1]徐用懋,馮恩波.人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及其在控制中的應(yīng)用[J].化工進(jìn)展,1993(5):8-12,20.
[2]湯素麗,羅宇鋒.人工神經(jīng)網(wǎng)絡(luò)技術(shù)的發(fā)展與應(yīng)用[J].電腦開發(fā)與應(yīng)用,2009(10):59-61.
[3]李會玲,柴秋燕.人工神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制的發(fā)展及展望[J].邢臺職業(yè)技術(shù)學(xué)院學(xué)報,2009(5):44-46.
[4]過效杰,祝彥知.人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及其在巖土工程領(lǐng)域研究現(xiàn)狀[J].河南水利,2004(1):22-23.
[5]崔永華.基于人工神經(jīng)網(wǎng)絡(luò)的河流匯流預(yù)報模型及應(yīng)用研究[D].鄭州大學(xué),2006.
下一頁分享更優(yōu)秀的<<<人工智能神經(jīng)網(wǎng)絡(luò)論文