不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級數(shù)學(xué)>

初中八年級數(shù)學(xué)上冊第14章全等三角形單元試卷

時間: 妙純901 分享

  仔細(xì)做八年級數(shù)學(xué)單元試卷題,學(xué)會灑脫;出錯要少,檢查要多;這是學(xué)習(xí)啦小編整理的初中八年級數(shù)學(xué)上冊第14章全等三角形單元試卷,希望你能從中得到感悟!

  初中八年級數(shù)學(xué)上冊第14章全等三角形單元試題

  一、選擇題(共9小題)

  1.如圖,在△ABC中,∠ABC=45°,AC=8cm,F(xiàn)是高AD和BE的交點,則BF的長是(  )

  A.4cm B.6cm C.8cm D.9cm

  2.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,A的坐標(biāo)為(1, ),則點C的坐標(biāo)為(  )

  A.(﹣ ,1) B.(﹣1, ) C.( ,1) D.(﹣ ,﹣1)

  3.在連接A地與B地的線段上有四個不同的點D、G、K、Q,下列四幅圖中的實線分別表示某人從A地到B地的不同行進(jìn)路線(箭頭表示行進(jìn)的方向),則路程最長的行進(jìn)路線圖是(  )

  A. B. C. D.

  4.如圖,坐標(biāo)平面上,△ABC與△DEF全等,其中A、B、C的對應(yīng)頂點分別為D、E、F,且AB=BC=5.若A點的坐標(biāo)為(﹣3,1),B、C兩點在方程式y(tǒng)=﹣3的圖形上,D、E兩點在y軸上,則F點到y(tǒng)軸的距離為何?(  )

  A.2 B.3 C.4 D.5

  5.平面上有△ACD與△BCE,其中AD與BE相交于P點,如圖.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,則∠BPD的度數(shù)為(  )

  A.110° B.125° C.130° D.155°

  6.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(  )

  A.∠EDB B.∠BED C. ∠AFB D.2∠ABF

  7.如圖,AB=4,射線BM和AB互相垂直,點D是AB上的一個動點,點E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長交射線BM于點C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是(  )

  A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣

  8.如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=(  )

  A. B. C. D. ﹣2

  9.如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為(  )

  A. a2 B. a2 C. a2 D. a2

  二、解答題(共21小題)

  10.已知△ABC為等邊三角形,D為AB邊所在的直線上的動點,連接DC,以DC為邊在DC兩側(cè)作等邊△DCE和等邊△DCF(點E在DC的右側(cè)或上側(cè),點F在DC左側(cè)或下側(cè)),連接AE、BF

  (1)如圖1,若點D在AB邊上,請你通過觀察,測量,猜想線段AE、BF和AB有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;

  (2)如圖2,若點D在AB的延長線上,其他條件不變,線段AE、BF和AB有怎樣的數(shù)量關(guān)系?請直接寫出結(jié)論(不需要證明);

  (3)若點D在AB的反向延長線上,其他條件不變,請在圖3中畫出圖形,探究線段AE、BF和AB有怎樣的數(shù)量關(guān)系,并直接寫出結(jié)論(不需要證明)

  11.如圖,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.

  (1)若∠ECF=30°,CF=8,求CE的長;

  (2)求證:△ABF≌△DEC;

  (3)求證:四邊形BCEF是矩形.

  12.如圖,△ABC與△DCB中,AC與BD交于點E,且∠A=∠D,AB=DC.

  (1)求證:△ABE≌DCE;

  (2)當(dāng)∠AEB=50°,求∠EBC的度數(shù)?

  13.如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.

  (1)求證:△ACD≌△AED;

  (2)若∠B=30°,CD=1,求BD的長.

  14.如圖,點D,E在△ABC的邊BC上,AB=AC,BD=CE.求證:AD=AE.

  15.已知:如圖,AD,BC相交于點O,OA=OD,AB∥CD.

  求證:AB=CD.

  16.如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

  (1)求證:CF=DG;

  (2)求出∠FHG的度數(shù).

  17.如圖,點B、F、C、E在一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD,求證:AC=DF.

  18.如圖,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一條直線上.求證:BD=CE.

  19.如圖,已知點B、E、C、F在同一條直線上,BE=CF,AB∥DE,∠A=∠D.求證:AB=DE.

  20.(1)如圖,AB平分∠CAD,AC=AD,求證:BC=BD;

  (2)列方程解應(yīng)用題

  把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學(xué)生?

  21.(1)如圖1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且點B,C,E在一條直線上.求證:∠A=∠D.

  (2)如圖2,在矩形ABCD中,對角線AC,BD相交于點O,AB=4,∠AOD=120°,求AC的長.

  22.如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.

  (1)求證:AE=CF;

  (2)若∠ABE=55°,求∠EGC的大小.

  23.如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,F(xiàn)C⊥BC.

  (1)求證:BE=CF;

  (2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.

  求證:①ME⊥BC;②DE=DN.

  24.【問題提出】

  學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.

  【初步思考】

  我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

  【深入探究】

  第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF.

  (1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)  ,可以知道Rt△ABC≌Rt△DEF.

  第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF.

  (2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.

  第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.

  (3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)

  (4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若  ,則△ABC≌△DEF.

  25.問題背景:

  如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

  小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是  ;

  探索延伸:

  如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,并說明理由;

  實際應(yīng)用:

  如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn).1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.

  26.如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點,OC=OA,若E是CD上任意一點,連接BE交AC于點F,連接DF.

  (1)證明:△CBF≌△CDF;

  (2)若AC=2 ,BD=2,求四邊形ABCD的周長;

  (3)請你添加一個條件,使得∠EFD=∠BAD,并予以證明.

  27.如圖,已知四邊形ABCD是平行四邊形,點E、B、D、F在同一直線上,且BE=DF.求證:AE=CF.

  28.(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.

  (2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.

  29.如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G,F(xiàn)為AB邊上一點,連接CF,且∠ACF=∠CBG.求證:

  (1)AF=CG;

  (2)CF=2DE.

  30.如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動,△ADE繞點A旋轉(zhuǎn),連接BE、CD,F(xiàn)為BE的中點,連接AF.

  (1)如圖①,當(dāng)∠BAE=90°時,求證:CD=2AF;

  (2)當(dāng)∠BAE≠90°時,(1)的結(jié)論是否成立?請結(jié)合圖②說明理由.

  初中八年級數(shù)學(xué)上冊第14章全等三角形單元試卷參考答案

  一、選擇題(共9小題)

  1.如圖,在△ABC中,∠ABC=45°,AC=8cm,F(xiàn)是高AD和BE的交點,則BF的長是(  )

  A.4cm B.6cm C.8cm D.9cm

  【考點】全等三角形的判定與性質(zhì).

  【分析】求出∠FBD=∠CAD,AD=BD,證△DBF≌△DAC,推出BF=AC,代入求出即可.

  【解答】解:∵F是高AD和BE的交點,

  ∴∠ADC=∠ADB=∠AEF=90°,

  ∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,

  ∵∠AFE=∠BFD,

  ∴∠CAD=∠FBD,

  ∵∠ADB=90°,∠ABC=45°,

  ∴∠BAD=45°=∠ABD,

  ∴AD=BD,

  在△DBF和△DAC中

  ∴△DBF≌△DAC(ASA),

  ∴BF=AC=8cm,

  故選C.

  【點評】本題考查了等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理的應(yīng)用,關(guān)鍵是推出△DBF≌△DAC.

  2.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,A的坐標(biāo)為(1, ),則點C的坐標(biāo)為(  )

  A.(﹣ ,1) B.(﹣1, ) C.( ,1) D.(﹣ ,﹣1)

  【考點】全等三角形的判定與性質(zhì);坐標(biāo)與圖形性質(zhì);正方形的性質(zhì).

  【專題】幾何圖形問題.

  【分析】過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,根據(jù)同角的余角相等求出∠OAD=∠COE,再利用“角角邊”證明△AOD和△OCE全等,根據(jù)全等三角形對應(yīng)邊相等可得OE=AD,CE=OD,然后根據(jù)點C在第二象限寫出坐標(biāo)即可.

  【解答】解:如圖,過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,

  ∵四邊形OABC是正方形,

  ∴OA=OC,∠AOC=90°,

  ∴∠COE+∠AOD=90°,

  又∵∠OAD+∠AOD=90°,

  ∴∠OAD=∠COE,

  在△AOD和△OCE中,

  ,

  ∴△AOD≌△OCE(AAS),

  ∴OE=AD= ,CE=OD=1,

  ∵點C在第二象限,

  ∴點C的坐標(biāo)為(﹣ ,1).

  故選:A.

  【點評】本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),坐標(biāo)與圖形性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.

  3.在連接A地與B地的線段上有四個不同的點D、G、K、Q,下列四幅圖中的實線分別表示某人從A地到B地的不同行進(jìn)路線(箭頭表示行進(jìn)的方向),則路程最長的行進(jìn)路線圖是(  )

  A. B. C. D.

  【考點】全等三角形的判定與性質(zhì);平行四邊形的判定與性質(zhì).

  【專題】壓軸題.

  【分析】分別構(gòu)造出平行四邊形和三角形,根據(jù)平行四邊形的性質(zhì)和全等三角形的性質(zhì)進(jìn)行比較,即可判斷.

  【解答】

  解:A、延長AC、BE交于S,

  ∵∠CAB=∠EDB=45°,

  ∴AS∥ED,則SC∥DE.

  同理SE∥CD,

  ∴四邊形SCDE是平行四邊形,

  ∴SE=CD,DE=CS,

  即走的路線長是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;

  B、延長AF、BH交于S1,作FK∥GH與BH的延長線交于點K,

  ∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,

  ∴△SAB≌△S1AB,

  ∴AS=AS1,BS=BS1,

  ∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,

  ∴FG∥KH,

  ∵FK∥GH,

  ∴四邊形FGHK是平行四邊形,

  ∴FK=GH,F(xiàn)G=KH,

  ∴AF+FG+GH+HB=AF+FK+KH+HB,

  ∵FS1+S1K>FK,

  ∴AS+BS>AF+FK+KH+HB,

  即AC+CD+DE+EB>AF+FG+GH+HB,

  C、D、同理可證得AI+IK+KM+MB

  綜上所述,D選項的所走的線路最長.

  故選:D.

  【點評】本題考查了平行線的判定,平行四邊形的性質(zhì)和判定的應(yīng)用,注意:兩組對邊分別平行的四邊形是平行四邊形,平行四邊形的對邊相等.

  4.如圖,坐標(biāo)平面上,△ABC與△DEF全等,其中A、B、C的對應(yīng)頂點分別為D、E、F,且AB=BC=5.若A點的坐標(biāo)為(﹣3,1),B、C兩點在方程式y(tǒng)=﹣3的圖形上,D、E兩點在y軸上,則F點到y(tǒng)軸的距離為何?(  )

  A.2 B.3 C.4 D.5

  【考點】全等三角形的判定與性質(zhì);坐標(biāo)與圖形性質(zhì).

  【分析】如圖,作AH、CK、FP分別垂直BC、AB、DE于H、K、P.由AB=BC,△ABC≌△DEF,就可以得出△AKC≌△CHA≌△DPF,就可以得出結(jié)論.

  【解答】解:如圖,作AH、CK、FP分別垂直BC、AB、DE于H、K、P.

  ∴∠DPF=∠AKC=∠CHA=90°.

  ∵AB=BC,

  ∴∠BAC=∠BCA.

  在△AKC和△CHA中

  ,

  ∴△AKC≌△CHA(ASA),

  ∴KC=HA.

  ∵B、C兩點在方程式y(tǒng)=﹣3的圖形上,且A點的坐標(biāo)為(﹣3,1),

  ∴AH=4.

  ∴KC=4.

  ∵△ABC≌△DEF,

  ∴∠BAC=∠EDF,AC=DF.

  在△AKC和△DPF中,

  ,

  ∴△AKC≌△DPF(AAS),

  ∴KC=PF=4.

  故選:C.

  【點評】本題考查了坐標(biāo)與圖象的性質(zhì)的運用,垂直的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,等腰三角形的性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.

  5.平面上有△ACD與△BCE,其中AD與BE相交于P點,如圖.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,則∠BPD的度數(shù)為(  )

  A.110° B.125° C.130° D.155°

  【考點】全等三角形的判定與性質(zhì).

  【分析】易證△ACD≌△BCE,由全等三角形的性質(zhì)可知:∠A=∠B,再根據(jù)已知條件和四邊形的內(nèi)角和為360°,即可求出∠BPD的度數(shù).

  【解答】解:在△ACD和△BCE中,

  ,

  ∴△ACD≌△BCE(SSS),

  ∴∠A=∠B,∠BCE=∠ACD,

  ∴∠BCA=∠ECD,

  ∵∠ACE=55°,∠BCD=155°,

  ∴∠BCA+∠ECD=100°,

  ∴∠BCA=∠ECD=50°,

  ∵∠ACE=55°,

  ∴∠ACD=105°

  ∴∠A+∠D=75°,

  ∴∠B+∠D=75°,

  ∵∠BCD=155°,

  ∴∠BPD=360°﹣75°﹣155°=130°,

  故選:C.

  【點評】本題考查了全等三角形的判定和性質(zhì)、三角形的內(nèi)角和定理以及四邊形的內(nèi)角和定理,解題的關(guān)鍵是利用整體的數(shù)學(xué)思想求出∠B+∠D=75°.

  6.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(  )

  A.∠EDB B.∠BED C. ∠AFB D.2∠ABF

  【考點】全等三角形的判定與性質(zhì).

  【分析】根據(jù)全等三角形的判定與性質(zhì),可得∠ACB與∠DBE的關(guān)系,根據(jù)三角形外角的性質(zhì),可得答案.

  【解答】解:在△ABC和△DEB中,

  ,

  ∴△ABC≌△DEB (SSS),

  ∴∠ACB=∠DBE.

  ∵∠AFB是△BFC的外角,

  ∴∠ACB+∠DBE=∠AFB,

  ∠ACB= ∠AFB,

  故選:C.

  【點評】本題考查了全等三角形的判定與性質(zhì),利用了全等三角形的判定與性質(zhì),三角形外角的性質(zhì).

  7.如圖,AB=4,射線BM和AB互相垂直,點D是AB上的一個動點,點E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長交射線BM于點C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是(  )

  A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣

  【考點】全等三角形的判定與性質(zhì);函數(shù)關(guān)系式;相似三角形的判定與性質(zhì).

  【專題】數(shù)形結(jié)合.

  【分析】作FG⊥BC于G,依據(jù)已知條件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根據(jù)平行線的性質(zhì)即可求得.

  【解答】解:作FG⊥BC于G,

  ∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;

  ∴∠BDE=∠FEG,

  在△DBE與△EGF中

  ∴△DBE≌△EGF,

  ∴EG=DB,F(xiàn)G=BE=x,

  ∴EG=DB=2BE=2x,

  ∴GC=y﹣3x,

  ∵FG⊥BC,AB⊥BC,

  ∴FG∥AB,

  CG:BC=FG:AB,

  即 = ,

  ∴y=﹣ .

  故選:A.

  【點評】本題考查了三角形全等的判定和性質(zhì),以及平行線的性質(zhì),輔助線的做法是解題的關(guān)鍵.

  8.如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=(  )

  A. B. C. D. ﹣2

  【考點】全等三角形的判定與性質(zhì);三角形的面積;角平分線的性質(zhì);含30度角的直角三角形;勾股定理.

  【專題】計算題;壓軸題.

  【分析】連接AC,通過三角形全等,求得∠BAC=30°,從而求得BC的長,然后根據(jù)勾股定理求得CM的長,

  連接MN,過M點作ME⊥CN于E,則△MNA是等邊三角形求得MN=2,設(shè)NE=x,表示出CE,根據(jù)勾股定理即可求得ME,然后求得tan∠MCN.

  【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,

  ∴AM=AN=2,BM=DN=4,

  連接MN,連接AC,

  ∵AB⊥BC,AD⊥CD,∠BAD=60°

  在Rt△ABC與Rt△ADC中,

  ,

  ∴Rt△ABC≌Rt△ADC(HL)

  ∴∠BAC=∠DAC= ∠BAD=30°,MC=NC,

  ∴BC= AC,

  ∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,

  3BC2=AB2,

  ∴BC=2 ,

  在Rt△BMC中,CM= = =2 .

  ∵AN=AM,∠MAN=60°,

  ∴△MAN是等邊三角形,

  ∴MN=AM=AN=2,

  過M點作ME⊥CN于E,設(shè)NE=x,則CE=2 ﹣x,

  ∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2 )2﹣(2 ﹣x)2,

  解得:x= ,

  ∴EC=2 ﹣ = ,

  ∴ME= = ,

  ∴tan∠MCN= =

  故選:A.

  【點評】此題考查了全等三角形的判定與性質(zhì),勾股定理以及解直角三角函數(shù),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.

  9.如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為(  )

  A. a2 B. a2 C. a2 D. a2

  【考點】全等三角形的判定與性質(zhì);正方形的性質(zhì).

  【專題】幾何圖形問題;壓軸題.

  【分析】過E作EP⊥BC于點P,EQ⊥CD于點Q,△EPM≌△EQN,利用四邊形EMCN的面積等于正方形PCQE的面積求解.

  【解答】解:過E作EP⊥BC于點P,EQ⊥CD于點Q,

  ∵四邊形ABCD是正方形,

  ∴∠BCD=90°,

  又∵∠EPM=∠EQN=90°,

  ∴∠PEQ=90°,

  ∴∠PEM+∠MEQ=90°,

  ∵三角形FEG是直角三角形,

  ∴∠NEF=∠NEQ+∠MEQ=90°,

  ∴∠PEM=∠NEQ,

  ∵AC是∠BCD的角平分線,∠EPC=∠EQC=90°,

  ∴EP=EQ,四邊形PCQE是正方形,

  在△EPM和△EQN中,

  ,

  ∴△EPM≌△EQN(ASA)

  ∴S△EQN=S△EPM,

  ∴四邊形EMCN的面積等于正方形PCQE的面積,

  ∵正方形ABCD的邊長為a,

  ∴AC= a,

  ∵EC=2AE,

  ∴EC= a,

  ∴EP=PC= a,

  ∴正方形PCQE的面積= a× a= a2,

  ∴四邊形EMCN的面積= a2,

  故選:D.

  【點評】本題主要考查了正方形的性質(zhì)及全等三角形的判定及性質(zhì),解題的關(guān)鍵是作出輔助線,證出△EPM≌△EQN.

  二、解答題(共21小題)

  10.(2013•阜新)已知△ABC為等邊三角形,D為AB邊所在的直線上的動點,連接DC,以DC為邊在DC兩側(cè)作等邊△DCE和等邊△DCF(點E在DC的右側(cè)或上側(cè),點F在DC左側(cè)或下側(cè)),連接AE、BF

  (1)如圖1,若點D在AB邊上,請你通過觀察,測量,猜想線段AE、BF和AB有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;

  (2)如圖2,若點D在AB的延長線上,其他條件不變,線段AE、BF和AB有怎樣的數(shù)量關(guān)系?請直接寫出結(jié)論(不需要證明);

  (3)若點D在AB的反向延長線上,其他條件不變,請在圖3中畫出圖形,探究線段AE、BF和AB有怎樣的數(shù)量關(guān)系,并直接寫出結(jié)論(不需要證明)

  【考點】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).

  【分析】(1)AE+BF=AB,可證明△CBF≌△CAD和△CDB≌△CAE分別得到AD=BF,BD=AE,易得結(jié)論;

  (2)BF﹣AE=AB,由△CBF≌△CAD和△CBD≌△CAE分別得到AD=BF,BD=AE,易得結(jié)論;

  (3)AE﹣BF=AB,由△CBF≌△CAD和△CBD≌△CAE分別得到AD=BF,BD=AE,易得結(jié)論.

  【解答】解:(1)AE+BF=AB,如圖1,

  ∵△ABC和△DCF是等邊三角形,

  ∴CA=CB,CD=CF,∠ACB=∠DCF=60°.

  ∴∠ACD=∠BCF,

  在△ACD和△BCF中

  ∴△ACD≌△BCF(SAS)

  ∴AD=BF

  同理:△CBD≌△CAE(SAS)

  ∴BD=AE

  ∴AE+BF=BD+AD=AB;

  (2)BF﹣AE=AB,

  如圖2,易證△CBF≌△CAD和△CBD≌△CAE,

  ∴AD=BF,BD=AE,

  ∴BF﹣AE=AD﹣BD=AB;

  (3)AE﹣BF=AB,

  如圖3,易證△CBF≌△CAD和△CBD≌△CAE,

  ∴AD=BF,BD=AE,

  ∴BF﹣AE=AD﹣BD=AB.

  【點評】本題主要考查了三角形全等的判定與性質(zhì),靈活運用類比思想,在變化中發(fā)現(xiàn)不變是解決問題的關(guān)鍵.

  11.如圖,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.

  (1)若∠ECF=30°,CF=8,求CE的長;

  (2)求證:△ABF≌△DEC;

  (3)求證:四邊形BCEF是矩形.

  【考點】全等三角形的判定與性質(zhì);矩形的判定.

  【分析】(1)解直角三角形即可求出答案;

  (2)根據(jù)平行線性質(zhì)求出∠A=∠D,根據(jù)SAS推出兩三角形全等即可;

  (3)根據(jù)全等三角形的性質(zhì)得出BF=CE,∠AFB=∠DCE,求出∠BFC=∠ECF,推出BF∥EC,根據(jù)平行四邊形的判定推出四邊形BCEF是平行四邊形,根據(jù)矩形的判定推出即可.

  【解答】(1)解:∵∠CEF=90°.

  ∴cos∠ECF= .

  ∵∠ECF=30°,CF=8.

  ∴CF=CF•cos30°=8× =4 ;

  (2)證明:∵AB∥DE,

  ∴∠A=∠D,

  ∵在△ABF和△DEC中

  ∴△ABF≌△DEC (SAS);

  (3)證明:由(2)可知:△ABF≌△DEC,

  ∴BF=CE,∠AFB=∠DCE,

  ∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,

  ∴∠BFC=∠ECF,

  ∴BF∥EC,

  ∴四邊形BCEF是平行四邊形,

  ∵∠CEF=90°,

  ∴四邊形BCEF是矩形.

  【點評】本題考查了解直角三角形,平行四邊形的判定,矩形的判定,全等三角形的性質(zhì)和判定的應(yīng)用,綜合運用性質(zhì)定理進(jìn)行推理是解此題的關(guān)鍵,難度適中.

  12.如圖,△ABC與△DCB中,AC與BD交于點E,且∠A=∠D,AB=DC.

  (1)求證:△ABE≌DCE;

  (2)當(dāng)∠AEB=50°,求∠EBC的度數(shù)?

  【考點】全等三角形的判定與性質(zhì).

  【分析】(1)根據(jù)AAS即可推出△ABE和△DCE全等;

  (2)根據(jù)三角形全等得出EB=EC,推出∠EBC=∠ECB,根據(jù)三角形的外角性質(zhì)得出∠AEB=2∠EBC,代入求出即可.

  【解答】(1)證明:∵在△ABE和△DCE中

  ∴△ABE≌△DCE(AAS);

  (2)解:∵△ABE≌△DCE,

  ∴BE=EC,

  ∴∠EBC=∠ECB,

  ∵∠EBC+∠ECB=∠AEB=50°,

  ∴∠EBC=25°.

  【點評】本題考查了三角形外角性質(zhì)和全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.

  13.如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.

  (1)求證:△ACD≌△AED;

  (2)若∠B=30°,CD=1,求BD的長.

  【考點】全等三角形的判定與性質(zhì);角平分線的性質(zhì);含30度角的直角三角形.

  【分析】(1)根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)HL定理求出另三角形全等即可;

  (2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質(zhì)求出即可.

  【解答】(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,

  ∴CD=ED,∠DEA=∠C=90°,

  ∵在Rt△ACD和Rt△AED中

  ∴Rt△ACD≌Rt△AED(HL);

  (2)解:∵DC=DE=1,DE⊥AB,

  ∴∠DEB=90°,

  ∵∠B=30°,

  ∴BD=2DE=2.

  【點評】本題考查了全等三角形的判定,角平分線性質(zhì),含30度角的直角三角形性質(zhì)的應(yīng)用,注意:角平分線上的點到角兩邊的距離相等.

  14.如圖,點D,E在△ABC的邊BC上,AB=AC,BD=CE.求證:AD=AE.

  【考點】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).

  【專題】證明題.

  【分析】利用等腰三角形的性質(zhì)得到∠B=∠C,然后證明△ABD≌△ACE即可證得結(jié)論.

  【解答】證明:∵AB=AC,

  ∴∠B=∠C,

  在△ABD與△ACE中,

  ∵ ,

  ∴△ABD≌△ACE(SAS),

  ∴AD=AE.

  【點評】本題考查了全等三角形的判定與性質(zhì)及等腰三角形的性質(zhì),解題的關(guān)鍵是利用等邊對等角得到∠B=∠C.

  15.已知:如圖,AD,BC相交于點O,OA=OD,AB∥CD.

  求證:AB=CD.

  【考點】全等三角形的判定與性質(zhì).

  【專題】證明題.

  【分析】首先根據(jù)AB∥CD,可得∠B=∠C,∠A=∠D,結(jié)合OA=OD,可知證明出△AOB≌△DOC,即可得到AB=CD.

  【解答】證明:∵AB∥CD,

  ∴∠B=∠C,∠A=∠D,

  ∵在△AOB和△DOC中,

  ,

  ∴△AOB≌△DOC(AAS),

  ∴AB=CD.

  【點評】此題主要考查了全等三角形的判定與性質(zhì)的知識,解答本題的關(guān)鍵是熟練掌握判定定理以及平行線的性質(zhì),此題基礎(chǔ)題,比較簡單.

  16.(2013•大慶)如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

  (1)求證:CF=DG;

  (2)求出∠FHG的度數(shù).

  【考點】全等三角形的判定與性質(zhì).

  【分析】(1)在△CBF和△DBG中,利用SAS即可證得兩個三角形全等,利用全等三角形的對應(yīng)邊相等即可證得;

  (2)根據(jù)全等三角形的對應(yīng)角相等,以及三角形的內(nèi)角和定理,即可證得∠DHF=∠CBF=60°,從而求解.

  【解答】(1)證明:∵在△CBF和△DBG中,

  ,

  ∴△CBF≌△DBG(SAS),

  ∴CF=DG;

  (2)解:∵△CBF≌△DBG,

  ∴∠BCF=∠BDG,

  又∵∠CFB=∠DFH,

  又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,

  △DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,

  ∴∠DHF=∠CBF=60°,

  ∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.

  【點評】本題考查了全等三角形的判定與性質(zhì),正確證明三角形全等是關(guān)鍵.

  17.如圖,點B、F、C、E在一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD,求證:AC=DF.

  【考點】全等三角形的判定與性質(zhì).

  【專題】證明題.

  【分析】求出BC=EF,根據(jù)平行線性質(zhì)求出∠B=∠E,∠ACB=∠DFE,根據(jù)ASA推出△ABC≌△DEF即可.

  【解答】證明:∵FB=CE,

  ∴FB+FC=CE+FC,

  ∴BC=EF,

  ∵AB∥ED,AC∥FD,

  ∴∠B=∠E,∠ACB=∠DFE,

  ∵在△ABC和△DEF中,

  ,

  ∴△ABC≌△DEF(ASA),

  ∴AC=DF.

  【點評】本題考查了平行線的性質(zhì)和全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.

  18.如圖,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一條直線上.求證:BD=CE.

  【考點】全等三角形的判定與性質(zhì);等腰直角三角形.

  【專題】證明題.

  【分析】求出AD=AE,AB=AC,∠DAB=∠EAC,根據(jù)SAS證出△ADB≌△AEC即可.

  【解答】證明:∵△ABC和△ADE都是等腰直角三角形

  ∴AD=AE,AB=AC,

  又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,

  ∴∠DAB=∠EAC,

  ∵在△ADB和△AEC中

  ∴△ADB≌△AEC(SAS),

  ∴BD=CE.

  【點評】本題考查了等腰直角三角形性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是推出△ADB≌△AEC.

  19.如圖,已知點B、E、C、F在同一條直線上,BE=CF,AB∥DE,∠A=∠D.求證:AB=DE.

  【考點】全等三角形的判定與性質(zhì).

  【專題】證明題.

  【分析】首先得出BC=EF,利用平行線的性質(zhì)∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.

  【解答】證明:∵BE=CF,∴BC=EF.

  ∵AB∥DE,∴∠B=∠DEF.

  在△ABC與△DEF中,

  ,

  ∴△ABC≌△DEF(AAS),

  ∴AB=DE.

  【點評】此題主要考查了平行線的性質(zhì)以及全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題關(guān)鍵.

  20.(1)如圖,AB平分∠CAD,AC=AD,求證:BC=BD;

  (2)列方程解應(yīng)用題

  把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學(xué)生?

  【考點】全等三角形的判定與性質(zhì);一元一次方程的應(yīng)用.

  【分析】(1)求出∠CAB=∠DAB,根據(jù)SAS推出△ABC≌△ABD即可;

  (2)設(shè)這個班有x名學(xué)生,根據(jù)題意得出方程3x+20=4x﹣25,求出即可.

  【解答】(1)證明:∵AB平分∠CAD,

  ∴∠CAB=∠DAB,

  在△ABC和△ABD中

  ∴△ABC≌△ABD(SAS),

  ∴BC=BD.

  (2)解:設(shè)這個班有x名學(xué)生,根據(jù)題意得:3x+20=4x﹣25,

  解得:x=45,

  答:這個班有45名學(xué)生.

  【點評】本題考查了全等三角形的性質(zhì)和判定,一元一次方程的應(yīng)用,主要考查學(xué)生的推理能力和列方程的能力.

  21.(1)如圖1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且點B,C,E在一條直線上.求證:∠A=∠D.

  (2)如圖2,在矩形ABCD中,對角線AC,BD相交于點O,AB=4,∠AOD=120°,求AC的長.

  【考點】全等三角形的判定與性質(zhì);矩形的性質(zhì).

  【分析】(1)首先根據(jù)平行線的性質(zhì)可得∠B=∠DCE,再利用SAS定理證明△ABC≌△DCE可得∠A=∠D;

  (2)根據(jù)矩形的性質(zhì)可得AO=BO=CO=DO,再證明△AOB是等邊三角形,可得AO=AB=4,進(jìn)而得到AC=2AO=8.

  【解答】(1)證明:∵AB∥DC,

  ∴∠B=∠DCE,

  在△ABC和△DCE中 ,

  ∴△ABC≌△DCE(SAS),

  ∴∠A=∠D;

  (2)解:∵四邊形ABCD是矩形,

  ∴AO=BO=CO=DO,

  ∵∠AOD=120°,

  ∴∠AOB=60°,

  ∴△AOB是等邊三角形,

  ∴AO=AB=4,

  ∴AC=2AO=8.

  【點評】此題主要考查了全等三角形的判定與性質(zhì),以及矩形的性質(zhì)和等邊三角形的判定,關(guān)鍵是掌握全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.

  22.如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.

  (1)求證:AE=CF;

  (2)若∠ABE=55°,求∠EGC的大小.

  【考點】全等三角形的判定與性質(zhì);等腰直角三角形;正方形的性質(zhì).

  【專題】幾何綜合題.

  【分析】(1)利用△AEB≌△CFB來求證AE=CF.

  (2)利用角的關(guān)系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得結(jié)果.

  【解答】(1)證明:∵四邊形ABCD是正方形,

  ∴∠ABC=90°,AB=BC,

  ∵BE⊥BF,

  ∴∠FBE=90°,

  ∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,

  ∴∠ABE=∠CBF,

  在△AEB和△CFB中,

  ∴△AEB≌△CFB(SAS),

  ∴AE=CF.

  (2)解:∵BE⊥BF,

  ∴∠FBE=90°,

  又∵BE=BF,

  ∴∠BEF=∠EFB=45°,

  ∵四邊形ABCD是正方形,

  ∴∠ABC=90°,

  又∵∠ABE=55°,

  ∴∠EBG=90°﹣55°=35°,

  ∴∠EGC=∠EBG+∠BEF=45°+35°=80°.

  【點評】本題主要考查了正方形,三角形全等判定和性質(zhì)及等腰三角形,解題的關(guān)鍵是求得△AEB≌△CFB,找出相等的線段.

  23.如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,F(xiàn)C⊥BC.

  (1)求證:BE=CF;

  (2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.

  求證:①ME⊥BC;②DE=DN.

  【考點】全等三角形的判定與性質(zhì);角平分線的性質(zhì);等腰直角三角形.

  【專題】證明題;幾何綜合題.

  【分析】(1)根據(jù)等腰直角三角形的性質(zhì)求出∠B=∠ACB=45°,再求出∠ACF=45°,從而得到∠B=∠ACF,根據(jù)同角的余角相等求出∠BAE=∠CAF,然后利用“角邊角”證明△ABE和△ACF全等,根據(jù)全等三角形對應(yīng)邊相等證明即可;

  (2)①過點E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根據(jù)角平分線上的點到角的兩邊距離相等可得DE=HE,然后求出HE=HM,從而得到△HEM是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)求解即可;

 ?、谇蟪?ang;CAE=∠CEA=67.5°,根據(jù)等角對等邊可得AC=CE,再利用“HL”證明Rt△ACM和Rt△ECM全等,根據(jù)全等三角形對應(yīng)角相等可得∠ACM=∠ECM=22.5°,從而求出∠DAE=∠ECM,根據(jù)等腰直角三角形的性質(zhì)可得AD=CD,再利用“角邊角”證明△ADE和△CDN全等,根據(jù)全等三角形對應(yīng)邊相等證明即可.

  【解答】證明:(1)∵∠BAC=90°,AB=AC,

  ∴∠B=∠ACB=45°,

  ∵FC⊥BC,

  ∴∠BCF=90°,

  ∴∠ACF=90°﹣45°=45°,

  ∴∠B=∠ACF,

  ∵∠BAC=90°,F(xiàn)A⊥AE,

  ∴∠BAE+∠CAE=90°,

  ∠CAF+∠CAE=90°,

  ∴∠BAE=∠CAF,

  在△ABE和△ACF中,

  ,

  ∴△ABE≌△ACF(ASA),

  ∴BE=CF;

  (2)①如圖,過點E作EH⊥AB于H,則△BEH是等腰直角三角形,

  ∴HE=BH,∠BEH=45°,

  ∵AE平分∠BAD,AD⊥BC,

  ∴DE=HE,

  ∴DE=BH=HE,

  ∵BM=2DE,

  ∴HE=HM,

  ∴△HEM是等腰直角三角形,

  ∴∠MEH=45°,

  ∴∠BEM=45°+45°=90°,

  ∴ME⊥BC;

 ?、谟深}意得,∠CAE=45°+ ×45°=67.5°,

  ∴∠CEA=180°﹣45°﹣67.5°=67.5°,

  ∴∠CAE=∠CEA=67.5°,

  ∴AC=CE,

  在Rt△ACM和Rt△ECM中

  , ,

  ∴Rt△ACM≌Rt△ECM(HL),

  ∴∠ACM=∠ECM= ×45°=22.5°,

  又∵∠DAE= ×45°=22.5°,

  ∴∠DAE=∠ECM,

  ∵∠BAC=90°,AB=AC,AD⊥BC,

  ∴AD=CD= BC,

  在△ADE和△CDN中,

  ,

  ∴△ADE≌△CDN(ASA),

  ∴DE=DN.

  【點評】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),角平分線上的點到角的兩邊距離相等的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出等腰直角三角形和全等三角形是解題的關(guān)鍵,難點在于最后一問根據(jù)角的度數(shù)得到相等的角.

  24.【問題提出】

  學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.

  【初步思考】

  我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

  【深入探究】

  第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF.

  (1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) HL ,可以知道Rt△ABC≌Rt△DEF.

  第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF.

  (2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.

  第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.

  (3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)

  (4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ∠B≥∠A ,則△ABC≌△DEF.

  【考點】全等三角形的判定與性質(zhì);作圖—應(yīng)用與設(shè)計作圖.

  【專題】壓軸題;探究型.

  【分析】(1)根據(jù)直角三角形全等的方法“HL”證明;

  (2)過點C作CG⊥AB交AB的延長線于G,過點F作FH⊥DE交DE的延長線于H,根據(jù)等角的補角相等求出∠CBG=∠FEH,再利用“角角邊”證明△CBG和△FEH全等,根據(jù)全等三角形對應(yīng)邊相等可得CG=FH,再利用“HL”證明Rt△ACG和Rt△DFH全等,根據(jù)全等三角形對應(yīng)角相等可得∠A=∠D,然后利用“角角邊”證明△ABC和△DEF全等;

  (3)以點C為圓心,以AC長為半徑畫弧,與AB相交于點D,E與B重合,F(xiàn)與C重合,得到△DEF與△ABC不全等;

  (4)根據(jù)三種情況結(jié)論,∠B不小于∠A即可.

  【解答】(1)解:HL;

  (2)證明:如圖,過點C作CG⊥AB交AB的延長線于G,過點F作FH⊥DE交DE的延長線于H,

  ∵∠ABC=∠DEF,且∠ABC、∠DEF都是鈍角,

  ∴180°﹣∠ABC=180°﹣∠DEF,

  即∠CBG=∠FEH,

  在△CBG和△FEH中,

  ,

  ∴△CBG≌△FEH(AAS),

  ∴CG=FH,

  在Rt△ACG和Rt△DFH中,

  ,

  ∴Rt△ACG≌Rt△DFH(HL),

  ∴∠A=∠D,

  在△ABC和△DEF中,

  ,

  ∴△ABC≌△DEF(AAS);

  (3)解:如圖,△DEF和△ABC不全等;

  (4)解:若∠B≥∠A,則△ABC≌△DEF.

  故答案為:(1)HL;(4)∠B≥∠A.

  【點評】本題考查了全等三角形的判定與性質(zhì),應(yīng)用與設(shè)計作圖,熟練掌握三角形全等的判定方法是解題的關(guān)鍵,閱讀量較大,審題要認(rèn)真仔細(xì).

  25.問題背景:

  如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

  小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 EF=BE+DF ;

  探索延伸:

  如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,并說明理由;

  實際應(yīng)用:

  如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn).1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.

  【考點】全等三角形的判定與性質(zhì).

  【專題】壓軸題;探究型.

  【分析】問題背景:根據(jù)全等三角形對應(yīng)邊相等解答;

  探索延伸:延長FD到G,使DG=BE,連接AG,根據(jù)同角的補角相等求出∠B=∠ADG,然后利用“邊角邊”證明△ABE和△ADG全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“邊角邊”證明△AEF和△GAF全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=GF,然后求解即可;

  實際應(yīng)用:連接EF,延長AE、BF相交于點C,然后求出∠EOF= ∠AOB,判斷出符合探索延伸的條件,再根據(jù)探索延伸的結(jié)論解答即可.

  【解答】解:問題背景:EF=BE+DF;

  探索延伸:EF=BE+DF仍然成立.

  證明如下:如圖,延長FD到G,使DG=BE,連接AG,

  ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,

  ∴∠B=∠ADG,

  在△ABE和△ADG中,

  ,

  ∴△ABE≌△ADG(SAS),

  ∴AE=AG,∠BAE=∠DAG,

  ∵∠EAF= ∠BAD,

  ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,

  ∴∠EAF=∠GAF,

  在△AEF和△GAF中,

  ,

  ∴△AEF≌△GAF(SAS),

  ∴EF=FG,

  ∵FG=DG+DF=BE+DF,

  ∴EF=BE+DF;

  實際應(yīng)用:如圖,連接EF,延長AE、BF相交于點C,

  ∵∠AOB=30°+90°+(90°﹣70°)=140°,

  ∠EOF=70°,

  ∴∠EOF= ∠AOB,

  又∵OA=OB,

  ∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,

  ∴符合探索延伸中的條件,

  ∴結(jié)論EF=AE+BF成立,

  即EF=1.5×(60+80)=210海里.

  答:此時兩艦艇之間的距離是210海里.

  【點評】本題考查了全等三角形的判定與性質(zhì),讀懂問題背景的求解思路,作輔助線構(gòu)造出全等三角形并兩次證明三角形全等是解題的關(guān)鍵,也是本題的難點.

  26.如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點,OC=OA,若E是CD上任意一點,連接BE交AC于點F,連接DF.

  (1)證明:△CBF≌△CDF;

  (2)若AC=2 ,BD=2,求四邊形ABCD的周長;

  (3)請你添加一個條件,使得∠EFD=∠BAD,并予以證明.

  【考點】全等三角形的判定與性質(zhì);勾股定理;菱形的判定與性質(zhì).

  【專題】幾何綜合題;開放型.

  【分析】(1)首先利用SSS定理證明△ABC≌△ADC可得∠BCA=∠DCA即可證明△CBF≌△CDF.

  (2)由△ABC≌△ADC可知,△ABC與△ADC是軸對稱圖形,得出OB=OD,∠COB=∠COD=90°,因為OC=OA,所以AC與BD互相垂直平分,即可證得四邊形ABCD是菱形,然后根據(jù)勾股定理全等AB長,進(jìn)而求得四邊形的面積.

  (3)首先證明△BCF≌△DCF可得∠CBF=∠CDF,再根據(jù)BE⊥CD可得∠BEC=∠DEF=90°,進(jìn)而得到∠EFD=∠BCD=∠BAD.

  【解答】(1)證明:在△ABC和△ADC中,

  ,

  ∴△ABC≌△ADC(SSS),

  ∴∠BCA=∠DCA,

  在△CBF和△CDF中,

  ,

  ∴△CBF≌△CDF(SAS),

  (2)解:∵△ABC≌△ADC,

  ∴△ABC和△ADC是軸對稱圖形,

  ∴OB=OD,BD⊥AC,

  ∵OA=OC,

  ∴四邊形ABCD是菱形,

  ∴AB=BC=CD=DA,

  ∵AC=2 ,BD=2,

  ∴OA= ,OB=1,

  ∴AB= = =2,

  ∴四邊形ABCD的周長=4AB=4×2=8.

  (3)當(dāng)EB⊥CD時,即E為過B且和CD垂直時垂線的垂足,∠EFD=∠BCD,

  理由:∵四邊形ABCD為菱形,

  ∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,

  ∵△BCF≌△DCF,

  ∴∠CBF=∠CDF,

  ∵BE⊥CD,

  ∴∠BEC=∠DEF=90°,

  ∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,

  ∴∠EFD=∠BAD.

  【點評】此題主要考查了全等三角形的判定與性質(zhì),以及菱形的判定與性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.

  27.如圖,已知四邊形ABCD是平行四邊形,點E、B、D、F在同一直線上,且BE=DF.求證:AE=CF.

  【考點】全等三角形的判定與性質(zhì);平行四邊形的性質(zhì).

  【專題】證明題.

  【分析】根據(jù)平行四邊形的對邊相等可得AB=CD,AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“邊角邊”證明△ABE和△CDF全等,根據(jù)全等三角形對應(yīng)邊相等證明即可.

  【解答】證明:∵四邊形ABCD是平行四邊形,

  ∴AB=CD,AB∥CD,

  ∴∠ABD=∠CDB,

  ∴180°﹣∠ABD=180°﹣∠CDB,

  即∠ABE=∠CDF,

  在△ABE和△CDF中,

  ,

  ∴△ABE≌△CDF(SAS),

  ∴AE=CF.

  【點評】本題考查了全等三角形的判定與性質(zhì),平行四邊形的性質(zhì),熟記性質(zhì)與三角形全等的判定方法求出全等的條件是解題的關(guān)鍵.

  28.(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.

  (2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.

  【考點】全等三角形的判定與性質(zhì);正方形的性質(zhì).

  【專題】證明題;壓軸題.

  【分析】(1)證△ADG≌△ABE,△FAE≌△FAG,根據(jù)全等三角形的性質(zhì)求出即可;

  (2)過點C作CE⊥BC,垂足為點C,截取CE,使CE=BM.連接AE、EN.通過證明△ABM≌△ACE(SAS)推知全等三角形的對應(yīng)邊AM=AE、對應(yīng)角∠BAM=∠CAE;然后由等腰直角三角形的性質(zhì)和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的對應(yīng)邊MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.

  【解答】(1)證明:在正方形ABCD中,

  ∠ABE=∠ADG,AD=AB,

  在△ABE和△ADG中,

  ∴△ABE≌△ADG(SAS),

  ∴∠BAE=∠DAG,AE=AG,

  ∴∠EAG=90°,

  在△FAE和△GAF中,

  ,

  ∴△FAE≌△GAF(SAS),

  ∴EF=FG;

  (2)解:如圖,過點C作CE⊥BC,垂足為點C,截取CE,使CE=BM.連接AE、EN.

  ∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.

  ∵CE⊥BC,∴∠ACE=∠B=45°.

  在△ABM和△ACE中,

  ∴△ABM≌△ACE(SAS).

  ∴AM=AE,∠BAM=∠CAE.

  ∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.

  于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.

  在△MAN和△EAN中,

  ∴△MAN≌△EAN(SAS).

  ∴MN=EN.

  在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.

  ∴MN2=BM2+NC2.

  ∵BM=1,CN=3,

  ∴MN2=12+32,

  ∴MN=

  【點評】本題主要考查正方形的性質(zhì),全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理的綜合應(yīng)用.

  29.(2014•重慶)如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G,F(xiàn)為AB邊上一點,連接CF,且∠ACF=∠CBG.求證:

  (1)AF=CG;

  (2)CF=2DE.

  【考點】全等三角形的判定與性質(zhì);等腰直角三角形.

  【專題】證明題.

  【分析】(1)要證AF=CG,只需證明△AFC≌△CBG即可.

  (2)延長CG交AB于H,則CH⊥AB,H平分AB,繼而證得CH∥AD,得出DG=BG和△ADE與△CGE全等,從而證得CF=2DE.

  【解答】證明:(1)∵∠ACB=90°,CG平分∠ACB,

  ∴∠ACG=∠BCG=45°,

  又∵∠ACB=90°,AC=BC,

  ∴∠CAF=∠CBF=45°,

  ∴∠CAF=∠BCG,

  在△AFC與△CGB中,

  ,

  ∴△AFC≌△CBG(ASA),

  ∴AF=CG;

  (2)延長CG交AB于H,

  ∵CG平分∠ACB,AC=BC,

  ∴CH⊥AB,CH平分AB,

  ∵AD⊥AB,

  ∴AD∥CG,

  ∴∠D=∠EGC,

  在△ADE與△CGE中,

  ,

  ∴△ADE≌△CGE(AAS),

  ∴DE=GE,

  即DG=2DE,

  ∵AD∥CG,CH平分AB,

  ∴DG=BG,

  ∵△AFC≌△CBG,

  ∴CF=BG,

  ∴CF=2DE.

  【點評】本題考查了三角形全等的判定和性質(zhì)、等腰三角形的性質(zhì)、平行線的判定及性質(zhì),三角形全等是解本題的關(guān)鍵.

  30.如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動,△ADE繞點A旋轉(zhuǎn),連接BE、CD,F(xiàn)為BE的中點,連接AF.

  (1)如圖①,當(dāng)∠BAE=90°時,求證:CD=2AF;

  (2)當(dāng)∠BAE≠90°時,(1)的結(jié)論是否成立?請結(jié)合圖②說明理由.

  【考點】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);三角形中位線定理;旋轉(zhuǎn)的性質(zhì).

  【專題】幾何綜合題.

  【分析】(1)因為AF是直角三角形ABE的中線,所以BE=2AF,然后通過△ABE≌△ACD即可求得.

  (2)延長EA交BC于G,在AG上截取AH=AD,證出△ABH≌△ACD從而證得BH=CD,然后根據(jù)三角形的中位線等于底邊的一半,求得BH=2AF,即可求得.

  【解答】(1)證明:如圖①,

  ∵∠BAC+∠EAD=180°,∠BAE=90°,

  ∴∠DAC=90°,

  在△ABE與△ACD中

  ∴△ABE≌△ACD(SAS),

  ∴CD=BE,

  ∵在Rt△ABE中,F(xiàn)為BE的中點,

  ∴BE=2AF,

  ∴CD=2AF.

  (2)成立,

  證明:如圖②,延長EA交BC于G,在AG上截取AH=AD,

  ∵∠BAC+∠EAD=180°,

  ∴∠EAB+∠DAC=180°,

  ∵∠EAB+∠BAH=180°,

  ∴∠DAC=∠BAH,

  在△ABH與△ACD中,

  ∴△ABH≌△ACD(SAS)

  ∴BH=DC,

  ∵AD=AE,AH=AD,

  ∴AE=AH,

  ∵EF=FB,

  ∴BH=2AF,

  ∴CD=2AF.

  【點評】本題考查了三角形全等的判定和性質(zhì),等腰三角形的性質(zhì),三角形中位線的性質(zhì)等.作出正確的輔助線是解題關(guān)鍵

  看了“初中八年級數(shù)學(xué)上冊第14章全等三角形單元試卷”的人還看了:

1.八年級數(shù)學(xué)上冊第12章全等三角形單元測試題

2.八年級數(shù)學(xué)上冊全等三角形精選練習(xí)題

3.八年級上冊數(shù)學(xué)第14章整式的乘除與因式分解考試卷

4.2017年8年級數(shù)學(xué)上冊第11章三角形單元測試題及答案

5.八年級數(shù)學(xué)全等三角形測試題

2485465