初二數(shù)學(xué)必備知識點(diǎn):相似三角形
在學(xué)習(xí)的過程中會(huì)玉帶很多困難,我們要學(xué)會(huì)克服。下面是學(xué)習(xí)啦小編收集整理的初二數(shù)學(xué)《相似三角形》的必備知識點(diǎn)以供大家學(xué)習(xí)。
初二數(shù)學(xué)必備知識點(diǎn):相似三角形
1.相似三角形定義:
對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。
3.相似三角形的相似比:
相似三角形的對應(yīng)邊的比叫做相似比。
4.相似三角形的預(yù)備定理:
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。、
初二數(shù)學(xué)必備知識點(diǎn):三角形全等的方法
1、三邊對應(yīng)相等的兩個(gè)三角形全等。(SSS)
2、兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等。(SAS)
3、兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等。(ASA)
4、有兩角及其一角的對邊對應(yīng)相等的兩個(gè)三角形全等(AAS)
5、斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等。(HL)
推論
要驗(yàn)證全等三角形,不需驗(yàn)證所有邊及所有角也對應(yīng)地相同。以下判定,是由三個(gè)對應(yīng)的部分組成,即全等三角形可透過以下定義來判定:
S.S.S. (Side-Side-Side)(邊、邊、邊):各三角形的三條邊的長度都對應(yīng)地相等的話,該兩個(gè)三角形就是全等。
S.A.S. (Side-Angle-Side)(邊、角、邊):各三角形的其中兩條邊的長度都對應(yīng)地相等,且兩條邊夾著的角都對應(yīng)地相等的話,該兩個(gè)三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、邊、角):各三角形的其中兩個(gè)角都對應(yīng)地相等,且兩個(gè)角夾著的邊都對應(yīng)地相等的話,該兩個(gè)三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、邊):各三角形的其中兩個(gè)角都對應(yīng)地相等,且沒有被兩個(gè)角夾著的邊都對應(yīng)地相等的話,該兩個(gè)三角形就是全等。
R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜邊、邊):各三角形的直角、斜邊及另外一條邊都對應(yīng)地相等的話,該兩個(gè)三角形就是全等。
但并非運(yùn)用任何三個(gè)相等的部分便能判定三角形是否全等。以下的判定同樣是運(yùn)用兩個(gè)三角形的三個(gè)相等的部分,但不能判定全等三角形:
A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三個(gè)角都對應(yīng)地相等,但這并不能判定全等三角形,但則可判定相似三角形。
A.S.S. (Angle-Side-Side)(角、邊、邊):各三角形的其中一個(gè)角都相等,且其余的兩條邊(沒有夾著該角),但這并不能判定全等三角形,除非是直角三角形。但若是直角三角形的話,應(yīng)以R.H.S.來判定。
初二數(shù)學(xué)必備知識點(diǎn):位置的確定
平面直角坐標(biāo)系概念:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系,水平的數(shù)軸叫x軸或橫軸;鉛垂的數(shù)軸叫y軸或縱軸,兩數(shù)軸的交點(diǎn)O稱為原點(diǎn)。
點(diǎn)的坐標(biāo):在平面內(nèi)一點(diǎn)P,過P向x軸、y軸分別作垂線,垂足在x軸、y軸上對應(yīng)的數(shù)a、b分別叫P點(diǎn)的橫坐標(biāo)和縱坐標(biāo),則有序?qū)崝?shù)對(a、b)叫做P點(diǎn)的坐標(biāo)。
在直角坐標(biāo)系中如何根據(jù)點(diǎn)的坐標(biāo),找出這個(gè)點(diǎn)(如圖4所示),方法是由P(a、b),在x軸上找到坐標(biāo)為a的點(diǎn)A,過A作x軸的垂線,再在y軸上找到坐標(biāo)為b的點(diǎn)B,過B作y軸的垂線,兩垂線的交點(diǎn)即為所找的P點(diǎn)。
如何根據(jù)已知條件建立適當(dāng)?shù)闹苯亲鴺?biāo)系?
根據(jù)已知條件建立坐標(biāo)系的要求是盡量使計(jì)算方便,一般地沒有明確的方法,但有以下幾條常用的方法:①以某已知點(diǎn)為原點(diǎn),使它坐標(biāo)為(0,0);②以圖形中某線段所在直線為x軸(或y軸);③以已知線段中點(diǎn)為原點(diǎn);④以兩直線交點(diǎn)為原點(diǎn);⑤利用圖形的軸對稱性以對稱軸為y軸等。
圖形“縱橫向伸縮”的變化規(guī)律:
A、將圖形上各個(gè)點(diǎn)的坐標(biāo)的縱坐標(biāo)不變,而橫坐標(biāo)分別變成原來的n倍時(shí),所得的圖形比原來的圖形在橫向:
?、佼?dāng)n>1時(shí),伸長為原來的n倍;②當(dāng)0
B、將圖形上各個(gè)點(diǎn)的坐標(biāo)的橫坐標(biāo)不變,而縱坐標(biāo)分別變成原來的n倍時(shí),所得的圖形比原來的圖形在縱向:
?、佼?dāng)n>1時(shí), 伸長為原來的n倍;②當(dāng)0
圖形“縱橫向位置”的變化規(guī)律:
A、將圖形上各個(gè)點(diǎn)的坐標(biāo)的縱坐標(biāo)不變,而橫坐標(biāo)分別加上a,所得的圖形形狀、大小不變,而位置向右(a>0)或向左(a<0)平移了|a|個(gè)單位。
B、將圖形上各個(gè)點(diǎn)的坐標(biāo)的橫坐標(biāo)不變,而縱坐標(biāo)分別加上b,所得的圖形形狀、大小不變,而位置向上(b>0)或向下(b<0)平移了|b|個(gè)單位。
圖形“倒轉(zhuǎn)與對稱”的變化規(guī)律:
A、將圖形上各個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)分別乘以-1,所得的圖形與原來的圖形關(guān)于x軸對稱。
B、將圖形上各個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)分別乘以-1,所得的圖形與原來的圖形關(guān)于y軸對稱。
圖形“擴(kuò)大與縮小”的變化規(guī)律:
將圖形上各個(gè)點(diǎn)的縱、橫坐標(biāo)分別變原來的n倍(n>0),所得的圖形與原圖形相比,形狀不變;①當(dāng)n>1時(shí),對應(yīng)線段大小擴(kuò)大到原來的n倍;②當(dāng)0