不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>初中學習方法>初二學習方法>八年級數(shù)學>

初二年級下學期數(shù)學期末試題及答案解析

時間: 翠霞1075 分享

  試卷點評課可使學生對知識進行重新組合,因此,要明確目的,突出重點,保持連續(xù),顧及整體,靈活運用。那么初二年級下學期數(shù)學期末試題及答案解析該怎么寫呢?下面是小編為大家整理的初二年級下學期數(shù)學期末試題及答案解析,希望對大家有幫助。

  初二年級下學期數(shù)學期末試題及答案解析篇一

  一、選擇題(1-10小題,每小題3分;11-16小題,每小題3分,共42分)

  1.不等式x+1>3的解集是(  )

  A.x>1 B.x>﹣2 C.x>2 D.x<2

  【分析】移項、合并同類項即可求解.

  【解答】解:移項,得x>3﹣1,

  合并同類項,得x>2.

  故選C.

  【點評】本題考查了解簡單不等式的能力,解答這類題學生往往在解題時不注意移項要改變符號這一點而出錯.

  解不等式要依據(jù)不等式的基本性質(zhì):

  (1)不等式的兩邊同時加上或減去同一個數(shù)或整式不等號的方向不變;

  (2)不等式的兩邊同時乘以或除以同一個正數(shù)不等號的方向不變;

  (3)不等式的兩邊同時乘以或除以同一個負數(shù)不等號的方向改變.

  2.下列電視臺的臺標,是中心對稱圖形的是(  )

  A. B. C. D.

  【分析】根據(jù)中心對稱圖形的概念對各選項分析判斷后利用排除法求解.

  【解答】解:A、不是中心對稱圖形,故A選項錯誤;

  B、不是中心對稱圖形,故B選項錯誤;

  C、不是中心對稱圖形,故C選項錯誤;

  D、是中心對稱圖形,故D選項正確.

  故選D.

  【點評】本題考查了中心對稱圖形,掌握中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合是解題的關鍵.

  3.不等式組 的解集在數(shù)軸上表示正確的是(  )

  A. B. C. D.

  【分析】首先解不等式組的每個不等式,然后根據(jù)不等式的表示法即可判斷.

  【解答】解: ,

  解①得x≤1,

  解②得x>﹣3.

  故選D.

  【點評】本題考查了不等式的解集在數(shù)軸上的表示法:“>”空心圓點向右畫折線,“≥”實心圓點向右畫折線,“<”空心圓點向左畫折線,“≤”實心圓點向左畫折線.

  4.如果一個多邊形的每一個內(nèi)角都是108°,那么這個多邊形是(  )

  A.四邊形 B.五邊形 C.六邊形 D.七邊形

  【分析】一個多邊形的每一個內(nèi)角都等于108°,根據(jù)內(nèi)角與相鄰的外角互補,因而每個外角是72度.根據(jù)任何多邊形的外角和都是360度,利用360除以外角的度數(shù)就可以求出多邊形的邊數(shù).

  【解答】解:180﹣108=72,

  多邊形的邊數(shù)是:360÷72=5.

  則這個多邊形是五邊形.

  故選:B.

  【點評】考查了多邊形內(nèi)角與外角,已知多邊形的內(nèi)角求邊數(shù),可以根據(jù)多邊形的內(nèi)角與外角的關系來解決.

  5.下列等式從左到右的變形,是因式分解的是(  )

  A.a(x﹣y)=ax﹣ay B.x2﹣2x+3=x(x﹣2)+3

  C.=x2+3x﹣4 D.x3﹣2x2+x=x(x﹣1)2

  【分析】根據(jù)因式分解是把一個多項式轉化成幾個整式積的形式,可得答案.

  【解答】解:A、是整式的乘法,故A錯誤;

  B、沒把一個多項式轉化成幾個整式積的形式,故B錯誤;

  C、是整式的乘法,故C錯誤;

  D、把一個多項式轉化成幾個整式積的形式,故D正確;

  故選:D.

  【點評】本題考查了因式分解的意義,因式分解是把一個多項式轉化成幾個整式積的形式.

  6.如圖,在▱ABCD中,O是對角線AC,BD的交點,下列結論錯誤的是(  )

  A.AB∥CD B.AB=CD C.AC=BD D.OA=OC

  【分析】根據(jù)平行四邊形的性質(zhì)推出即可.

  【解答】解:∵四邊形ABCD是平行四邊形,

  ∴AB∥CD,AB=CD,OA=OC,

  但是AC和BD不一定相等,

  故選C.

  【點評】本題考查了平行四邊形的性質(zhì)的應用,能熟記平行四邊形的性質(zhì)是解此題的關鍵,注意:平行四邊形的對邊相等且平行,平行四邊形的對角線互相平分.

  7.分式 可變形為(  )

  A. B.﹣ C. D.﹣

  【分析】根據(jù)分式的性質(zhì),分子分母都乘以﹣1,分式的值不變,可得答案.

  【解答】解:分式 的分子分母都乘以﹣1,

  得﹣ ,

  故選:D.

  【點評】本題考查了分式的性質(zhì),分式的分子分母都乘以或除以同一個不為0的整式,分式的值不變.

  8.若關于x的分式方程 的解為x=2,則m值為(  )

  A.2 B.0 C.6 D.4

  【分析】根據(jù)分式方程 的解為x=2,將x=2代入方程可以得到m的值.

  【解答】解:∵分式方程 的解為x=2,

  ∴ ,

  解得m=6.

  故選C.

  【點評】本題考查分式方程的解,解題的關鍵是明確題意,用代入法求m的值.

  9.如圖1,平行四邊形紙片ABCD的面積為120,AD=20,AB=18.今沿兩對角線將四邊形ABCD剪成甲、乙、丙、丁四個三角形紙片.若將甲、丙合并(AD、CB重合)形成一線對稱圖形戊,如圖2所示,則圖形戊的兩對角線長度和(  )

  A.26 B.29 C.24 D.25

  【分析】根據(jù)題意,知要求的兩條對角線的和即為AD與AD邊上的高的和.

  【解答】解:∵AD=20,平行四邊形的面積是120,

  ∴AD邊上的高是6.

  ∴要求的兩對角線長度和是20+6=26.

  故選A.

  【點評】此題主要是能夠把線段之間的對應關系弄清.

  10.如圖,已知矩形ABCD中,R、P分別是DC、BC上的點,E、F分別是AP、RP的中點,當P在BC上從B向C移動而R不動時,那么下列結論成立的是(  )

  A.線段EF的長逐漸增大 B.線段EF的長逐漸減小

  C.線段EF的長不改變 D.線段EF的長不能確定

  【分析】因為R不動,所以AR不變.根據(jù)中位線定理,EF不變.

  【解答】解:連接AR.

  因為E、F分別是AP、RP的中點,

  則EF為△APR的中位線,

  所以EF= AR,為定值.

  所以線段EF的長不改變.

  故選:C.

  【點評】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.

  11.如圖,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE= ,則AC=(  )

  A.1 B.2 C.3 D.4

  【分析】利用線段的垂直平分線的性質(zhì)計算.

  【解答】解:∵DE垂直平分AB

  ∴∠B=∠DAE,BE=AE

  ∵∠B=22.5°,∠C=90°

  ∴∠AEC=∠CAE=45°

  ∴AC=CE

  ∴2AC2=AE2∴AC=2.

  故選B.

  【點評】此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段的垂直平分線上的點到線段的兩個端點的距離相等.

  12.計算:101×1022﹣101×982=(  )

  A.404 B.808 C.40400 D.80800

  【分析】先提取公因式,再運用平方差公式分解因式,然后計算即可.

  【解答】解:101×1022﹣101×982=101(1022﹣982)=101(102+98)(102﹣98)=101×200×4=80800;

  故選:D.

  【點評】此題主要考查了提取公因式法和平方差公式的應用,正確進行因式分解是解題關鍵.

  13.如圖,直線y=kx+b經(jīng)過點A(﹣1,﹣2)和點B(﹣2,0),直線y=2x過點A,則不等式2x

  A.x<﹣2 B.﹣2

  【分析】根據(jù)不等式2x

  【解答】解:不等式2x

  顯然,這些點在點A與點B之間.

  故選B.

  【點評】本題考查了一次函數(shù)與不等式(組)的關系及數(shù)形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數(shù)形結合.

  14.如圖,已知∠AOB=60°,點P在邊OA上,OP=10,點M、N在邊OB上,PM=PN,若MN=2,則OM的長為(  )

  A.2 B.3 C.4 D.5

  【分析】作PH⊥MN于H,如圖,根據(jù)等腰三角形的性質(zhì)得MH=NH= MN=1,在Rt△POH中由∠POH=60°得到∠OPH=30°,則根據(jù)在直角三角形中,30°角所對的直角邊等于斜邊的一半可得OH= OP=5,然后計算OH﹣MH即可.

  【解答】解:作PH⊥MN于H,如圖,

  ∵PM=PN,

  ∴MH=NH= MN=1,

  在Rt△POH中,∵∠POH=60°,

  ∴∠OPH=30°,

  ∴OH= OP= ×10=5,

  ∴OM=OH﹣MH=5﹣1=4.

  故選C.

  【點評】本題考查了含30度角的直角三角形的性質(zhì):在直角三角形中,30°角所對的直角邊等于斜邊的一半.此結論是由等邊三角形的性質(zhì)推出,體現(xiàn)了直角三角形的性質(zhì),它在解直角三角形的相關問題中常用來求邊的長度和角的度數(shù).也考查了等腰三角形的性質(zhì).

  15.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是(  )

  A. = B. = C. = D. =

  【分析】設原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,根據(jù)題意可得,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同,據(jù)此列方程即可.

  【解答】解:設原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,

  由題意得, = .

  故選B.

  【點評】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.

  16.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE,PF分別交AB,AC于點E,F(xiàn),連接EF交AP于點G,給出以下五個結論:

 ?、?ang;B=∠C=45°;

 ?、贏E=CF,

 ?、跘P=EF,

 ?、堋鱁PF是等腰直角三角形,

 ?、菟倪呅蜛EPF的面積是△ABC面積的一半.

  其中正確的結論是(  )

  A.只有① B.①②④ C.①②③④ D.①②④⑤

  【分析】根據(jù)等腰直角三角形的性質(zhì)得:∠B=∠C=45°,AP⊥BC,AP= BC,AP平分∠BAC.所以可證∠C=∠EAP;∠FPC=∠EPA;AP=PC.即證得△APE與△CPF全等.根據(jù)全等三角形性質(zhì)判斷結論是否正確,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.

  【解答】解:∵AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,

  ∴①∠B=∠C= ×(180°﹣90°)=45°,AP⊥BC,AP= BC=PC,∠BAP=∠CAP=45°=∠C,

  ∵∠APF+∠FPC=90°,∠APF+∠APE=90°,

  ∴∠FPC=∠EPA.

  ∴△APE≌△CPF(ASA),

  ∴②AE=CF;④EP=PF,即△EPF是等腰直角三角形;同理可證得△APF≌△BPE,

  ∴⑤四邊形AEPF的面積是△ABC面積的一半,

  ∵△ABC是等腰直角三角形,P是BC的中點,

  ∴AP= BC,

  ∵EF不是△ABC的中位線,

  ∴EF≠AP,故③錯誤;

 ?、堋?ang;AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,

  ∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,

  ∴∠AEP=∠AGF.

  故正確的有①、②、④、⑤,共四個.

  因此選D.

  【點評】本題考查了等腰直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,中位線的性質(zhì)的運用,等腰直角三角形的判定定理的運用,三角形面積公式的運用,解答時靈活運用等腰直角三角形的性質(zhì)求解是關鍵.

  二.填空題(每小題3分,共12分)

  17.因式分解:2x3﹣8x2+8x= 2x(x﹣2)2 .

  【分析】原式提取公因式,再利用完全平方公式分解即可.

  【解答】解:原式=2x(x2﹣4x+4)

  =2x(x﹣2)2.

  故答案為:2x(x﹣2)2.

  【點評】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.

  18.若x+ ,則 的值是   .

  【分析】把原分式分子分母除以x,然后利用整體代入的方法計算.

  【解答】解: = ,

  當x+ ,原式= = .

  故答案為 .

  【點評】本題考查了分式的化簡求值:解決本題的關鍵是利用整體代入的方法計算.

  19.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離為 2 ,旋轉角的度數(shù)為 60° .

  【分析】根據(jù)平移和旋轉的性質(zhì)得到三角形全等,進而解答即可.

  【解答】解:∵將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,

  ∴△ABC≌△A'B'C',

  ∴AB=A'B'=A'C,

  ∴△A'B'C是等邊三角形,

  ∴∠A'CB'=60°,B'C=AB=4,

  ∴BB'=6﹣4=2,旋轉角的度數(shù)為60°,

  故答案為:2,60°;

  【點評】本題考查了旋轉的性質(zhì):旋轉前后兩圖形全等;對應點到旋轉中心的距離相等;對應點與旋轉中心的連線段的夾角等于旋轉角.

  20.在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關于點B1成中心對稱,再作△B2A3B3與△B2A2B1關于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是 (4n+1, ) .

  【分析】首先根據(jù)△OA1B1是邊長為2的等邊三角形,可得A1的坐標為(1, ),B1的坐標為(2,0);然后根據(jù)中心對稱的性質(zhì),分別求出點A2、A3、A4的坐標各是多少;最后總結出An的坐標的規(guī)律,求出A2n+1的坐標是多少即可.

  【解答】解:∵△OA1B1是邊長為2的等邊三角形,

  ∴A1的坐標為(1, ),B1的坐標為(2,0),

  ∵△B2A2B1與△OA1B1關于點B1成中心對稱,

  ∴點A2與點A1關于點B1成中心對稱,

  ∵2×2﹣1=3,2×0﹣ =﹣ ,

  ∴點A2的坐標是(3,﹣ ),

  ∵△B2A3B3與△B2A2B1關于點B2成中心對稱,

  ∴點A3與點A2關于點B2成中心對稱,

  ∵2×4﹣3=5,2×0﹣(﹣ )= ,

  ∴點A3的坐標是(5, ),

  ∵△B3A4B4與△B3A3B2關于點B3成中心對稱,

  ∴點A4與點A3關于點B3成中心對稱,

  ∵2×6﹣5=7,2×0﹣ =﹣ ,

  ∴點A4的坐標是(7,﹣ ),

  …,

  ∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,

  ∴An的橫坐標是2n﹣1,A2n+1的橫坐標是2(2n+1)﹣1=4n+1,

  ∵當n為奇數(shù)時,An的縱坐標是 ,當n為偶數(shù)時,An的縱坐標是﹣ ,

  ∴頂點A2n+1的縱坐標是 ,

  ∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是(4n+1, ).

  故答案為:(4n+1, ).

  【點評】此題主要考查了坐標與圖形變化﹣旋轉問題,要熟練掌握,解答此題的關鍵是分別判斷出An的橫坐標、縱坐標各是多少.

  初二年級下學期數(shù)學期末試題及答案解析篇二

  三、解答題

  21.(1)解方程: = +1

  (2)先化簡,再求值:(1+ )÷ ,其中x=3.

  【分析】(1)先去分母,求出x的值,代入公分母進行檢驗即可;

  (2)先算括號里面的,再算除法,最后把x的值代入進行計算即可.

  【解答】解:(1)方程兩邊同時乘以x﹣2得,1﹣x=﹣1+x﹣2,

  解得x=2.

  檢驗:將x=2代入原方程,分母x﹣2=0,

  所以,x=2是增根,原方程無解.

  (2)原式=

  =

  = ,

  當x=3時,原式= = .

  【點評】本題考查的是分式的化簡求值,分式中的一些特殊求值題并非是一味的化簡,代入,求值.許多問題還需運用到常見的數(shù)學思想,如化歸思想(即轉化)、整體思想等,了解這些數(shù)學解題思想對于解題技巧的豐富與提高有一定幫助.

  22.已知關于x,y的方程組 滿足x﹣y≤0,求k的最大整數(shù)值.

  【分析】方程組兩方程相加表示出x﹣y,代入已知不等式求出k的范圍,即可確定出k的最大整數(shù)解.

  【解答】解: ,

 ?、?②得:3x﹣3y=2k﹣1,即x﹣y= ≤0,

  解得:k≤ .

  則k的最大整數(shù)解為0.

  【點評】此題考查了二元一次方程組的解,以及解一元一次不等式,熟練掌握運算法則是解本題的關鍵.

  23.如圖,△ABC三個頂點的坐標分別為A(﹣1,1),B(﹣4,2),C(﹣3,4).

  (1)請畫出△ABC向右平移5個單位長度后得到△A1B1C1;

  (2)請畫出△ABC關于原點對稱的△A2B2C2;

  (3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.

  【分析】(1)直接利用平移的性質(zhì)得出對應點位置進而得出答案;

  (2)直接利用關于原點對稱點的性質(zhì)得出對應點位置進而得出答案;

  (3)利用軸對稱求最短路線的方法得出P點位置.

  【解答】解:(1)如圖所示:△A1B1C1,即為所求;

  (2)如圖所示:△A2B2C2,即為所求;

  (3)如圖所示,此時△PAB的周長最小,P點坐標為:(﹣2,0).

  【點評】此題主要考查了平移變換以及旋轉變換和軸對稱求最短路線,正確得出對應點位置是解題關鍵.

  24.如圖,在▱ABCD中,點E是BC邊的中點,連接AE并延長與DC的延長線交于F.

  (1)求證:CF=CD;

  (2)若AF平分∠BAD,連接DE,試判斷DE與AF的位置關系,并說明理由.

  【分析】(1)根據(jù)平行四邊形的性質(zhì)可得到AB∥CD,從而可得到AB∥DF,根據(jù)平行線的性質(zhì)可得到兩組角相等,已知點E是BC的中點,從而可根據(jù)初二年級下學期數(shù)學期末試題及答案解析S來判定△BAE≌△CFE,根據(jù)全等三角形的對應邊相等可證得AB=CF,進而得出CF=CD;

  (2)利用全等三角形的判定與性質(zhì)得出AE=EF,再利用角平分線的性質(zhì)以及等角對等邊求出DA=DF,利用等腰三角形的性質(zhì)求出即可.

  【解答】(1)證明:∵四邊形ABCD是平行四邊形,

  ∴AB∥CD,

  ∵點F為DC的延長線上的一點,

  ∴AB∥DF,

  ∴∠BAE=∠CFE,∠ECF=∠EBA,

  ∵E為BC中點,

  ∴BE=CE,

  則在△BAE和△CFE中,

  ,

  ∴△BAE≌△CFE(初二年級下學期數(shù)學期末試題及答案解析S),

  ∴AB=CF,

  ∴CF=CD;

  (2)解:DE⊥AF,

  理由:∵AF平分∠BAD,

  ∴∠BAF=∠DAF,

  ∵∠BAF=∠F,

  ∴∠DAF=∠F,

  ∴DA=DF,

  又由(1)知△BAE≌△CFE,

  ∴AE=EF,

  ∴DE⊥AF.

  【點評】此題主要考查學生對平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì),證明線段相等的常用方法是證明三角形全等.

  25.某體育用品專賣店今年3月初用4000元購進了一批“中考體能測試專用繩”,上市后很快售完.該店于3月中旬又購進了和第一批數(shù)量相同的專用繩,由于第二批專用繩的進價每根比第一批提高了10元,結果進第二批專用繩共用了5000元.

  (1)第一批專用繩每根的進貨價是多少元?

  (2)若第一批專用繩的售價是每根60元,為保證第二批專用繩的利潤率不低于第一批的利潤率,那么第二批專用繩每根售價至少是多少元?

  (提示:利潤=售價﹣進價,利潤率= )

  【分析】(1)設第一批繩進貨時的價格為每根x元,根據(jù)第一批和第二批的數(shù)量相同,可得出方程,解出后可得出答案;

  (2)設第二批專用繩每根的售價為y元,根據(jù)第二批專用繩的利潤率不低于第一批的利潤率,可得出不等式,解出后可得出答案.

  【解答】解:(1)設第一批繩進貨時的價格為每根x元,

  由題意得: ,

  解得:x=40,

  經(jīng)檢驗,x=40是所列方程的根,且符合題意.

  答:第一批專用繩的進貨價格是每根40元.

  (2)設第二批專用繩每根的售價為y元,

  由題意得: ,

  解得:y≥75.

  答:第二批專用繩每根的售價至少為75元.

  【點評】本題考查了分式方程的應用及一元一次不等式的應用,對于此類應用類題目,關鍵是尋找等量關系或不等關系,如果這樣的關系不好尋找,建議同學們多讀幾遍題目,尋找信息點.

  26.如圖,在等邊△ABC中,點D在直線BC上,連接AD,作∠ADN=60°,直線DN交射線AB于點E,過點C作CF∥AB交直線DN于點F.

  (1)當點D在線段BC上,∠NDB為銳角時,如圖①,

  ①判斷∠1與∠2的大小關系,并說明理由;

 ?、谶^點F作FM∥BC交射線AB于點M,求證:CF+BE=CD;

  (2)當點D在線段BC的延長線上,∠NDB為銳角時,如圖②;

  當點D在線段CB的延長線上,∠NDB為鈍角時,如圖③;

  請分別寫出線段CF,BE,CD之間的數(shù)量關系,不需要證明;

  (3)在(2)的條件下,若∠ADC=30°,S△ABC=4 ,直接寫出BE和CD的長度.

  【分析】(1)①根據(jù)等邊三角形的性質(zhì)∠ABC=∠ACB=60°,根據(jù)已知條件得到∠1+∠ADC=120°,∠ADC+∠2=120°,根據(jù)等式的性質(zhì)即可得到結論;②通過△MEF≌△CDA即可求得ME=CD,因為通過證四邊形BCFM是平行四邊形可以得出BM=CF,從而證得CF+BE=CD;

  (2)作FM∥BC,得出四邊形BCFM是平行四邊形,然后通過證得△MEF≌△CDA即可求得,

  (3)根據(jù)△ABC的面積可求得AB=BC=AC=4,同時代的BD=2AB=8,求得 BE=8,即可得到結論.

  【解答】解:(1)①∠1=∠2,

  ∵△ABC是等邊三角形,

  ∴∠ABC=∠ACB=60°

  ∵∠ADN=60°,

  ∴∠1+∠ADC=120°,∠ADC+∠2=120°,

  ∴∠1=∠2;

 ?、谧C明:如圖①,過點F作FM∥BC交射線AB于點M,

  ∵CF∥AB,

  ∴四邊形BMFC是平行四邊形,

  ∴BC=MF,CF=BM,

  ∴∠ABC=∠EMF,∠BDE=∠MFE,

  ∵△ABC是等邊三角形,

  ∴∠ABC=∠ACB=60°,BC=AC,

  ∴∠EMF=∠ACB,AC=MF,

  ∵∠ADN=60°,

  ∴∠BDE+∠ADC=120°,∠ADC+∠DAC=120°,

  ∴∠BDE=∠DAC,

  ∴∠MFE=∠DAC,

  在△MEF與△CDA中,

  ,

  ∴△MEF≌△CDA(初二年級下學期數(shù)學期末試題及答案解析S),

  ∴CD=ME=EB+BM,

  ∴CD=BE+CF;

  (2)如圖②,由(1)證得四邊形BMFC是平行四邊形,

  ∴BC=MF,CF=BM,

  由(1)證得△MEF≌△CDA(初二年級下學期數(shù)學期末試題及答案解析S),

  ∴CD=ME=EB﹣BM,

  ∴CF+CD=BE,

  如圖③,同理CF﹣CD=BE;

  (3)∵△ABC是等邊三角形,S△ABC=4 ,

  ∴易得AB=BC=AC=4,

  如圖②,

  ∵∠ADC=30°,∠ACB=60°,

  ∴CD=AC=4,

  ∵∠ADN=60°,

  ∴∠CDF=30°,

  又∵CF∥AB,

  ∴∠BCF=∠ABC=60°,

  ∴∠CFD=∠CDF=30°,

  ∴CD=CF,

  由(2)知BE=CF+CD,

  ∴BE=4+4=8.

  如圖③,

  ∵∠ADC=30°,∠ABC=60°,

  ∴∠BAD=∠ADC=30°,

  ∴BD=BA=4,

  ∴CD=BD+BC=4+4=8,

  ∵∠ADN=60°,∠ADC=30°,

  ∴∠BDE=90°,

  又∵∠DBE=∠ABC=60°,

  ∴∠DEB=30°,

  在Rt△BDE中,∠DEB=30°,BD=4,

  ∴BE=2BD=8,

  綜上,BE=8,CD=4或8.

  【點評】本題考查了等邊三角形的性質(zhì),平行四邊形的判定和性質(zhì),三角形全等的判定和性質(zhì),30°角所對的直角邊等于斜邊的一半,正確的作出輔助線構造全等三角形是解題的關鍵.
猜你喜歡:

1.人教版八年級下冊數(shù)學期末試題

2.八年級數(shù)學下冊期末試卷及答案

3.8年級下冊數(shù)學期末試卷及答案解析

4.八年級下冊數(shù)學期末卷子及答案

5.八年級下冊數(shù)學期末考試試卷

初二年級下學期數(shù)學期末試題及答案解析

試卷點評課可使學生對知識進行重新組合,因此,要明確目的,突出重點,保持連續(xù),顧及整體,靈活運用。那么初二年級下學期數(shù)學期末試題及答案解析該怎么寫呢?下面是小編為大家整理的初二年級下學期數(shù)學期末試題及答案解析,希望對大家有幫助。
推薦度:
點擊下載文檔文檔為doc格式
3624540