初一上冊數(shù)學(xué)知識點總結(jié)(2)
初一上冊數(shù)學(xué)知識點總結(jié)
初一上冊數(shù)學(xué)知識點總結(jié)第三章 一元一次方程
3.1 一元一次方程
1、方程是含有未知數(shù)的等式。
2、方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。
注意:判斷一個方程是否是一元一次方程要抓住三點:
1)未知數(shù)所在的式子是整式(方程是整式方程);
2)化簡后方程中只含有一個未知數(shù);
3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.
3、解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。
4、等式的性質(zhì): 1)等式兩邊同時加(或減)同一個數(shù)(或式子),結(jié)果仍相等;
2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
注意:運用性質(zhì)時,一定要注意等號兩邊都要同時變;運用性質(zhì)2時,一定要注意0這個數(shù).
3.2 、3.3解一元一次方程
在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復(fù)使用. 因此在解方程時還要注意以下幾點:
?、偃シ帜福涸诜匠虄蛇叾汲艘愿鞣帜傅淖钚」稊?shù),不要漏乘不含分母的項;分子是一個整體,去分母后應(yīng)加上括號;去分母與分母化整是兩個概念,不能混淆;
②去括號:遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號;
③移項:把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;
?、芎喜⑼愴棧翰灰獊G項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;
?、菹禂?shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。
3.4 實際問題與一元一次方程
一.概念梳理
?、帕幸辉淮畏匠探鉀Q實際問題的一般步驟是:①審題,特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)數(shù)量關(guān)系;②設(shè)出未知數(shù)(注意單位);③根據(jù)相等關(guān)系列出方程;④解這個方程;⑤檢驗并寫出答案(包括單位名稱)。
?、埔恍┕潭P椭械牡攘筷P(guān)系及典型例題參照一元一次方程應(yīng)用題專練學(xué)案。
二、思想方法(本單元常用到的數(shù)學(xué)思想方法小結(jié))
?、沤K枷耄和ㄟ^對實際問題中的數(shù)量關(guān)系的分析,抽象成數(shù)學(xué)模型,建立一元一次方程的思想.
?、品匠趟枷耄河梅匠探鉀Q實際問題的思想就是方程思想.
?、腔瘹w思想:解一元一次方程的過程,實質(zhì)上就是利用去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最后逐步把方程轉(zhuǎn)化為x=a的形式. 體現(xiàn)了化“未知”為“已知”的化歸思想.
?、葦?shù)形結(jié)合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關(guān)系,使問題中的數(shù)量關(guān)系很直觀地展示出來,體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.
⑸分類思想:在解含字母系數(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關(guān)方案設(shè)計的實際問題的過程中往往也要注意分類思想在過程中的運用.
三、數(shù)學(xué)思想方法的學(xué)**
1. 解一元一次方程時,要明確每一步過程都作什么變形,應(yīng)該注意什么問題.
2. 尋找實際問題的數(shù)量關(guān)系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.
3. 列方程解應(yīng)用題的檢驗包括兩個方面:⑴檢驗求得的結(jié)果是不是方程的解;
?、剖且袛喾匠痰慕馐欠穹项}目中的實際意義.
四、應(yīng)用(常見等量關(guān)系)
行程問題:s=v×t
工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本
利率=利潤÷成本×100%
售價=標(biāo)價×折扣數(shù)×10%
儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
初一上冊數(shù)學(xué)知識點總結(jié)第四章 幾何圖形初步
4.1 幾何圖形
1、幾何圖形:從形形色色的物體外形中得到的圖形叫做幾何圖形。
2、立體圖形:這些幾何圖形的各部分不都在同一個平面內(nèi)。
3、平面圖形:這些幾何圖形的各部分都在同一個平面內(nèi)。
4、雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
立體圖形中某些部分是平面圖形。
5、三視圖:從左面看,從正面看,從上面看
6、展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形。這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
7、⑴幾何體簡稱體;包圍著體的是面;面面相交形成線;線線相交形成點;
?、泣c無大小,線、面有曲直;
?、菐缀螆D形都是由點、線、面、體組成的;
?、赛c動成線,線動成面,面動成體;
?、牲c:是組成幾何圖形的基本元素。
4.2 直線、射線、線段
1、直線公理:經(jīng)過兩點有一條直線,并且只有一條直線。即:兩點確定一條直線。
2、當(dāng)兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。
3、把一條線段分成相等的兩條線段的點,叫做這條線段的中點。
4、線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
5、連接兩點間的線段的長度,叫做這兩點的距離。
6、直線的表示方法:如圖的直線可記作直線AB或記作直線m.
(1)用幾何語言描述右面的圖形,我們可以說:
點P在直線AB外,點A、B都在直線AB上.
(2)如圖,點O既在直線m上,又在直線n上,我們稱直線
m、n 相交,交點為O.
7、在直線上取點O,把直線分成兩個部分,去掉一邊的一個部分,保留點0和另一部分就得到一條射線,如圖就是一條射線,記作射線OM或記作射線a.
注意:射線有一個端點,向一方無限延伸.
8、在直線上取兩個點A、B,把直線分成三個部分,去掉兩邊的部分,保留點A、B和中間的一部分就得到一條線段.如圖就是一條線段,記作線段AB或記作線段a.
注意:線段有兩個端點.
4.3 角
1. 角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。如圖,角的頂點是O,兩邊分別是射線OA、OB.
2、角有以下的表示方法:
① 用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間.如上圖的角,可以記作∠AOB或∠BOA.
?、?用一個大寫字母表示.這個字母就是頂點.如上圖的角可記作∠O.當(dāng)有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示.
?、?用一個數(shù)字或一個希臘字母表示.在角的內(nèi)部靠近角的頂點
處畫一弧線,寫上希臘字母或數(shù)字.如圖的兩個角,分別記作∠、∠1
2、以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進(jìn)制的。
1度=60分 1分=60秒 1周角=360度 1平角=180度
3、角的平分線:一般地,從一個角的頂點出發(fā),把這個角分成兩個相等的角的射線,叫做這個角的平分線。
4、如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角;
如果兩個角的和等于180度(平角),就說這兩個叫互為補(bǔ)角,即其中每一個角是另一個角的補(bǔ)角。
5、同角(等角)的補(bǔ)角相等;同角(等角)的余角相等。
6、方位角:一般以正南正北為基準(zhǔn),描述物體運動的方向。
看了“初一上冊數(shù)學(xué)知識點總結(jié)”的人還看了: