高二數(shù)學(xué)排列與組合教案
高二數(shù)學(xué)排列與組合教案
教案是教師為順利而有效地開展教學(xué)活動,根據(jù)教學(xué)大綱 和教科書要求及學(xué)生的實際情況,以課時或課題為單位,對教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法等進(jìn)行的具體設(shè)計和安排的一種實用性教學(xué)文書。面是學(xué)習(xí)啦小編為大家整理的高二數(shù)學(xué)《排列與組合》教案,希望對大家有所幫助!
高二數(shù)學(xué)《排列與組合》教案
1.2排列與組合(一)
學(xué)習(xí)目標(biāo)
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學(xué)的排列組合知識,正確地解決的實際問題.
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;
(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;
(4)集合A有個 元素,集合B有 個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是 ;
二、新課導(dǎo)學(xué)
◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風(fēng)景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?
◆應(yīng)用示例
例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
◆反饋練習(xí)
1. (課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?
2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.
當(dāng)堂檢測
1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )
A.42 B.30 C.20 D.12
2.(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于201345的正整數(shù)?
2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
看過"高二數(shù)學(xué)排列與組合教案 "的還看了:
1.高二數(shù)學(xué)《排列與組合》教學(xué)設(shè)計