數(shù)學(xué)高二函數(shù)的奇偶性知識(shí)點(diǎn)
數(shù)學(xué)高二函數(shù)的奇偶性知識(shí)點(diǎn)
函數(shù)奇偶性是數(shù)學(xué)學(xué)科知識(shí)之一,同學(xué)們?cè)诳荚囘^(guò)程中也會(huì)常常碰到相關(guān)的題目,下面是學(xué)習(xí)啦小編給大家?guī)?lái)的數(shù)學(xué)高二函數(shù)的奇偶性知識(shí)點(diǎn),希望對(duì)你有幫助。
函數(shù)的奇偶性基礎(chǔ)定義
一般地,對(duì)于函數(shù)f(x)
?、湃绻麑?duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函數(shù)f(x)就叫做偶函數(shù)。關(guān)于y軸對(duì)稱,f(-x)=f(x)。
?、迫绻麑?duì)于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函數(shù)f(x)就叫做奇函數(shù)。關(guān)于原點(diǎn)對(duì)稱,-f(x)=f(-x)。
⑶如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R關(guān)于原點(diǎn)對(duì)稱。)那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
?、热绻麑?duì)于函數(shù)定義域內(nèi)的存在一個(gè)a,使得f(a)≠f(-a),存在一個(gè)b,使得f(-b)≠-f(b),那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
定義域互為相反數(shù),定義域必須關(guān)于原點(diǎn)對(duì)稱
特殊的,f(x)=0既是奇函數(shù),又是偶函數(shù)。
說(shuō)明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言。
?、谄?、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不具有奇偶性。
(分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過(guò)化簡(jiǎn)、整理、再與f(x)比較得出結(jié)論)
?、叟袛嗷蜃C明函數(shù)是否具有奇偶性的根據(jù)是定義。
?、苋绻粋€(gè)奇函數(shù)f(x)在x=0處有意義,則這個(gè)函數(shù)在x=0處的函數(shù)值一定為0。并且關(guān)于原點(diǎn)對(duì)稱。
?、萑绻瘮?shù)定義域不關(guān)于原點(diǎn)對(duì)稱或不符合奇函數(shù)、偶函數(shù)的條件則叫做非奇非偶函數(shù)。例如f(x)=x³【-∞,-2】或【0,+∞】(定義域不關(guān)于原點(diǎn)對(duì)稱)
?、奕绻瘮?shù)既符合奇函數(shù)又符合偶函數(shù),則叫做既奇又偶函數(shù)。例如f(x)=0
注:任意常函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱)均為偶函數(shù),只有f(x)=0是既奇又偶函數(shù)
函數(shù)的奇偶性證明方法
?、哦x法:函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱,對(duì)應(yīng)法則是否相同
?、茍D像法:f(x)為奇函數(shù)<=>f(x)的圖像關(guān)于原點(diǎn)對(duì)稱點(diǎn)(x,y)→(-x,-y)f(x)為偶函數(shù)<=>f(x)的圖像關(guān)于Y軸對(duì)稱點(diǎn)(x,y)→(-x,y)
⑶特值法:根據(jù)函數(shù)奇偶性定義,在定義域內(nèi)取特殊值自變量,計(jì)算后根據(jù)因變量的關(guān)系判斷函數(shù)奇偶性。
?、刃再|(zhì)法:利用一些已知函數(shù)的奇偶性及以下準(zhǔn)則(前提條件為兩個(gè)函數(shù)的定義域交集不為空集):兩個(gè)奇函數(shù)的代數(shù)和(差)是奇函數(shù);兩個(gè)偶函數(shù)的和(差)是偶函數(shù);奇函數(shù)與偶函數(shù)的和(差)既非奇函數(shù)也非偶函數(shù);兩個(gè)奇函數(shù)的積(商)為偶函數(shù);兩個(gè)偶函數(shù)的積(商)為偶函數(shù);奇函數(shù)與偶函數(shù)的積(商)是奇函數(shù)。
函數(shù)的奇偶性相關(guān)性質(zhì)
1、大部分偶函數(shù)沒(méi)有反函數(shù)(因?yàn)榇蟛糠峙己瘮?shù)在整個(gè)定義域內(nèi)非單調(diào)函數(shù)),一個(gè)函數(shù)與它的反函數(shù)在相應(yīng)區(qū)間上單調(diào)性一致。
2、偶函數(shù)在定義域內(nèi)關(guān)于y軸對(duì)稱的兩個(gè)區(qū)間上單調(diào)性相反,奇函數(shù)在定義域內(nèi)關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上單調(diào)性相同。
3、奇±奇=奇偶±偶=偶奇X奇=偶偶X偶=偶奇X偶=奇(兩函數(shù)定義域要關(guān)于原點(diǎn)對(duì)稱)。
4、對(duì)于F(x)=f[g(x)]:若g(x)是偶函數(shù)且f(x)是偶函數(shù),則F[x]是偶函數(shù)。
若g(x)奇函數(shù)且f(x)是奇函數(shù),則F(x)是奇函數(shù)。
若g(x)奇函數(shù)且f(x)是偶函數(shù),則F(x)是偶函數(shù)。
5、奇函數(shù)與偶函數(shù)的定義域必須關(guān)于原點(diǎn)對(duì)稱。