高二數(shù)學(xué)知識(shí)點(diǎn):函數(shù)公式總結(jié)
高二數(shù)學(xué)知識(shí)點(diǎn):函數(shù)公式總結(jié)
數(shù)學(xué)對(duì)于文科生來(lái)說(shuō)是個(gè)大難題,有些同學(xué)甚至“談數(shù)學(xué)色變”。其實(shí)只要掌握恰當(dāng)?shù)膶W(xué)習(xí)方法,就能輕松拿下數(shù)學(xué)這門課。雖然說(shuō)數(shù)學(xué)是理科,但是一些重要公式還是需要花時(shí)間記憶的,下面小編總結(jié)了高二的數(shù)學(xué)公式,希望能幫到大家。
(1)高中函數(shù)公式的變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
(2)一次函數(shù):①若兩個(gè)變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱是的一次函數(shù)。②當(dāng)=0時(shí),稱是的正比例函數(shù)。
(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)
①把一個(gè)函數(shù)的自變量與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
?、谡壤瘮?shù)=的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。
③在一次函數(shù)中,當(dāng)0,O,則經(jīng)2、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、4象限;當(dāng)0,0時(shí),則經(jīng)1、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、3象限。
?、墚?dāng)0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而減少。
(4)高中函數(shù)的二次函數(shù):
①一般式:(),對(duì)稱軸是
頂點(diǎn)是;
?、陧旤c(diǎn)式:(),對(duì)稱軸是頂點(diǎn)是;
?、劢稽c(diǎn)式:(),其中(),()是拋物線與x軸的交點(diǎn)
(5)高中函數(shù)的二次函數(shù)的性質(zhì)
?、俸瘮?shù)的圖象關(guān)于直線對(duì)稱。
?、跁r(shí),在對(duì)稱軸()左側(cè),值隨值的增大而減少;在對(duì)稱軸()右側(cè);的值隨值的增大而增大。當(dāng)時(shí),取得最小值
?、蹠r(shí),在對(duì)稱軸()左側(cè),值隨值的增大而增大;在對(duì)稱軸()右側(cè);的值隨值的增大而減少。當(dāng)時(shí),取得最大值
高中函數(shù)的圖形的對(duì)稱
(1)軸對(duì)稱圖形:①如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。②軸對(duì)稱圖形上關(guān)于對(duì)稱軸對(duì)稱的兩點(diǎn)確定的線段被對(duì)稱軸垂直平分。
(2)中心對(duì)稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。