快高考了,怎么學好高中數學?
快高考了,怎么學好高中數學?
學習數學需要講究方法和技巧,用對方法做什么事情都會事半功倍。那么快高考了,怎么學好高中數學?下面是學習啦小編為大家整理的學習高三數學的方法,請認真學習!
高考數學學習方法介紹
時間過得飛快,同學們一路踩著大大小小的測試,轉眼就走到了年底。這個階段,如何提高數學的解題能力,恐怕是大多數同學的心病。如何打開你們的心結,解放你們的時間呢?今天,作為高考數學滿分的清華學子就給同學們談談自己的一點數學的復習方法,幫助你們提高我們的數學解題能力。請那些急待數學成績提高的同學做好筆記吧。
數學在命題方面千變萬化,知識點又非常容易綜合穿插,所以,對那些不擅長整合知識、對數學概念缺乏理解的同學來講,難免會感到數學很“難”。進入11月之后,不少家長都在幫助孩子尋找數學的復習方法和解題思維,希望能夠提高孩子的數學學習能力,早日讓孩子的數學成績發(fā)生變化。依我的學習經驗總結一下,問題都集中在這上面:“在數學學科上投入很大精力,很努力,但是到頭來,只會做老師講過的題。考試的時候,題型稍微一變,馬上就答不上來,非常讓人著急......”
其實,數學是一個簡單的學科,因為答案是唯一的,問題又非常明確,比其他學科都容易掌握,分數也更容易提高。那些認為數學難、遇到新題沒思路、做了大量習題,收效卻不大的同學其實還是沒有抓到數學的學習竅門。從大的方面講,是學生不懂得什么是學習?從小的方面講,是學生缺乏數學學習胃口,沒有數學思路。學習是讓我們發(fā)現(xiàn)一種內在的存在方式,思路是連接知識與問題之間的過程。如果你清楚了解這點,你會非常輕松,也會非常有方向。然后,你就會像阿基米德一樣,發(fā)現(xiàn)這個世界。
首先,你要培養(yǎng)三項能力:
這三項能力對于數學成績的高低起著關鍵性的作用,即:
1、理解知識,知道知識是從哪里來的,要用到哪里去;
2、善于分析,一道題目,能夠快速找到可以利用的條件,對應前面的恰當知識;
3、精于思維管理,思路靈活并且善于主動式思考,可以快速精準的解決問題。
在形容這個解題能力的時候,可以舉個很恰當的例子:一道題,給出我們一些條件,又給出我們一個目標。但是在目標和條件之間,還有一些空,需要我們去填補,怎樣填補?用我們解決問題的思想,將自己理解的知識點填充在空白處。好,這道題你就做的很漂亮。其實學習和工作一樣,跟我們應對生活中的任何問題都一樣。我們可以回想一下,在我們遇到問題的時候,我們是不是都會率先抓住問題的要害(善抓重點的人,問題都處理的高效精準。相反,都一盤散沙)?抓住要害就等于抓住了目標,為了達成這個目標,我們首先數數當前我們擁有什么有利條件,接下來創(chuàng)造一些條件,完成目標。在數學題中,題目就是目標;有利條件就是已知條件;創(chuàng)造條件,就是利用解決問題的思維,找到的知識點。如果這樣去看待問題,你還認為數學抽象嗎?我常常對學生講:學習不應該很辛苦,堅持、努力、鞠躬盡瘁、嘔心瀝血這些詞語都帶有痛苦的成份,不是最佳的學習方式。學習的光明境界是,了之一種內在的存在形式,找到究竟。當我們了之知識存在的形式之后,我們會與他們輕松相應,我們認識每個知識,他們也認識我們,這樣的相處才很愉快。
通過一定的方法訓練數學思想,簡化數學知識點的理解,數學知識是非常容易融匯貫通的。在解題思想上,通過不斷尋找“目標前提”也就是必要性思維,是能夠做到以不變應萬變,大道無形。
其次,我們要有一套訓練有素的數學復習標準步驟,下面就讓我們循著通往數學滿分的路,看看如何駕馭自己的思想走上數學高分的捷徑。
一、解題思路的理解和來源
平時大家評論一個孩子“聰明”或者“不聰明”的依據是看這個孩子對某件事或很多事得反應以及有沒有他自己的看法。如一個“聰明”的孩子,往往反應快、思路清楚,有自己的主見。那么我們認為“反應快、思路清楚、有主見”是聰明的前提。學習成績好的同學,反應快、思路清楚、有主見就是他們的必備條件。
那么解題也如此,必須反應快、思路清楚、有主見。同一道題,不同的學生從不同的角度去理解,由不同的看法最終匯聚成正確的解題過程,這是解題的必然。無論是推導、還是硬性套用、憑借經驗做題,都是思路的一種。有的同學由開始思路不清漸漸轉變?yōu)榍宄?,有的同學根本沒有思路,這就形成了做題的上的差距。
如果能教會給學生,在處理數學問題上,第一時間最短的思考路徑,并且清晰無比,這樣,每個學生都是“聰明的孩子”,在做題上就能攻無不克戰(zhàn)無不勝。
解題思路的來源就是對題的看法,也就是第一出發(fā)點在哪。
二、如何在短期內訓練解題能力
數學解題思想其實只要掌握一種即可,即必要性思維。這是解答數學試題的萬用法門,也是最直接、最快捷的答題思想。什么是必要性思維?必要性思維就是通過所求結論或者某一限定條件尋求前提的思想。幾乎所有數學命題都可以用這一思想進行破解??v觀近幾年高考數學試題,可以看出試題加強了對知識點靈活應用的考查。這就對大家的思維能力要求大大加強。如何才能提升思維能力,很多考生便依靠題海戰(zhàn)術,寄希望多做題來應對多變的考題,然而憑借題海戰(zhàn)術的功底仍然難以獲得科學的思維方式,以至收效甚微。最主要的原因就是解題思路隨意造成的,并非所謂“不夠用功”等原因。由于思維能力的原因,大家在解答高考題時形成一定的障礙。主要表現(xiàn)在兩個方面,一是無法找到解題的切入點,二是雖然找到解題的突破口,但做這做著就走不下去了。
三、尋找解題途徑的基本方法——從求解(證)入手
遇到有一定難度的考題我們會發(fā)現(xiàn)出題者設置了種種障礙。從已知出發(fā),岔路眾多,順推下去越做越復雜,難得到答案,如果從問題入手,尋找要想獲得所求,必須要做什么,找到“需知”后,將“需知”作為新的問題,直到與“已知“所能獲得的“可知”相溝通,將問題解決。事實上,在不等式證明中采用的“分析法”就是這種思維的充分體現(xiàn),我們將這種思維稱為“逆向思維”——目標前提性思維。
四、完成解題過程的關鍵——數學式子變形
解答高考數學試題遇到的第二障礙就是數學式子變形。一道數學綜合題,要想完成從已知到結論的過程,必須經過大量的數學式子變形,而這些變形僅靠大量的做題過程是無法真正完全掌握的,很多考生都有這樣的經歷,在解一道復雜的考題時,做不下去了,而回過頭來再看一看答案,才恍然大悟,解法這么簡單,后悔莫及,埋怨自己怎么糊涂到沒有把式子再這么變一下呢?
其實數學解題的每一步推理和運算,實質都是轉換(變形).但是,轉換(變形)的目的是更好更快的解題,所以變形的方向必定是化繁為簡,化抽象為具體,化未知為已知,也就是創(chuàng)造條件向有利于解題的方向轉化.還必須注意的是,一切轉換必須是等價的,否則解答將出現(xiàn)錯誤。解決數學問題實際上就是在題目的已知條件和待求結論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規(guī)律性的東西需要總結。在后面的幾章中我們列舉的一些思維定勢,就是在數學思想指導下總結出來的。在解答高考題中時刻都在進行數學變形由復雜到簡單,這也就是轉化,數學式子變形的思維方式:時刻關注所求與已知的差異。
五、夯實基礎----回歸課本
1、揭示規(guī)律----掌握解題方法
高考試題再難也逃不了課本揭示的思維方法及規(guī)律。我們說回歸課本,不是簡單的梳理知識點。課本中定理,公式推證的過程就蘊含著重要的方法,而很多考生沒有充分暴露思維過程,沒有發(fā)覺其內在思維的規(guī)律就去解題,而希望通過題海戰(zhàn)術去“悟”出某些道理,結果是題海沒少泡,卻總也不見成效,最終只能留在理解的膚淺,僅會機械的模仿,思維水平低的地方。因此我們要側重基本概念,基本理論的剖析,達到以不變應萬變。
2、加強理解----提升能力
復習要真正的回到 重視 基礎的軌道 上來。沒有基礎談不到不到能力。這里的基礎不是指機械重復的訓練,而是指要搞清基本原理,基本方法,體驗知識形成過程以及對知識本質意義的理解與感悟。只有深刻理解概念,才能抓住問題本質,構建知識網絡。
3、思維模式化----解題步驟固定化
解答數學試題有一定的規(guī)律可循,解題操作要有明確的思路和目標,要做到思維模式化。所謂模式化也就是解題步驟固定化,一般思維過程分為以下步驟:
(1)審題
審題的關鍵是,首先弄清要求(證)的是什么?已知條件是什么?結論是什么?條件的表達方式是否能轉換(數形轉換,符號與圖形的轉換,文字表達轉為數學表達等),所給圖形和式子有什么特點?能否用一個圖形(幾何的、函數的或示意的)或數學式子(對文字題)將問題表達出來?有什么隱含條件?由已知條件能推得哪些可知事項和條件?要求未知結論,必須做什么?需要知道哪些條件(需知)?
(2)明確解題目標.關注已知與所求的差距,進行數學式子變形(轉化),在需知與可知間架橋(缺什么補什么)
A.能否將題中復雜的式子化簡?
B.能否對條件進行劃分,將大問題化為幾個小問題?
C.能否進行變量替換(換元)、恒等變換,將問題的形式變得較為明顯一些?
D.能否代數式子幾何變換(數形結合)?利用幾何方法來解代數問題?或利用代數(解析)方法來解幾何問題?數學語言能否轉換?(向量表達轉為坐標表達等)
E.最終目的:將未知轉化為已知。
(3)求解要求解答清楚,簡潔,正確,推理嚴密,運算準確,不跳步驟;表達規(guī)范,步驟完整
以上步驟可歸納總結為:目標分析,條件分析,差異分析,結構分析,逆向思維,減元,直觀,特殊轉化,主元轉化,換元轉化。
最后,就是在平時學習中按照上述標準去做,不用太長時間,一個月,你的成績就會發(fā)生變化了......祝愿大家在期末考試的時候,成績有一個大幅度的提高。
看過"快高考了,怎么學好高中數學? "的還看了:
2.高考數學得分技巧
4.怎樣學好高考數學