高三數(shù)學函數(shù)知識點
高三數(shù)學函數(shù)知識點
高三復習數(shù)學每一章知識點掌握對復習是非常有利的,下面是學習啦小編給大家?guī)淼母呷龜?shù)學函數(shù)知識點,希望對你有幫助。
高三數(shù)學函數(shù)知識點
(一)指數(shù)與指數(shù)冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數(shù)時,,當是偶數(shù)時,
2.分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實數(shù)指數(shù)冪的運算性質
(二)指數(shù)函數(shù)及其性質
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質
a>1
圖象特征
函數(shù)性質
向x、y軸正負方向無限延伸
函數(shù)的定義域為R
圖象關于原點和y軸不對稱
非奇非偶函數(shù)
函數(shù)圖象都在x軸上方
函數(shù)的值域為R+
函數(shù)圖象都過定點(0,1)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
在第一象限內的圖象縱坐標都大于1
在第一象限內的圖象縱坐標都小于1
在第二象限內的圖象縱坐標都小于1
在第二象限內的圖象縱坐標都大于1
圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數(shù)值開始增長較慢,到了某一值后增長速度極快;
函數(shù)值開始減小極快,到了某一值后減小速度較慢;
注意:利用函數(shù)的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當且僅當;
(3)對于指數(shù)函數(shù),總有;
(4)當時,若,則;