不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

2018高考數(shù)學重要知識

時間: 鳳婷983 分享

  高考數(shù)學有很多記憶性的知識點,通過理解性記憶更容易牢記。下面學習啦小編給大家?guī)砀呖紨?shù)學重要知識,希望對你有幫助。

  2018高考數(shù)學重要知識

  空間直線與直線之間的位置關系

 ?、佼惷嬷本€定義:不同在任何一個平面內(nèi)的兩條直線

 ?、诋惷嬷本€性質(zhì):既不平行,又不相交.

  ③異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

 ?、墚惷嬷本€所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

  求異面直線所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

  (8)空間直線與平面之間的位置關系

  直線在平面內(nèi)——有無數(shù)個公共點.

  三種位置關系的符號表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關系:平行——沒有公共點;α‖β

  相交——有一條公共直線.α∩β=b

  空間中的平行問題

  (1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行.線面平行線線平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個平面平行的判定定理

  (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行.

  (線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質(zhì)定理

  (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

  空間角問題

  (1)直線與直線所成的角

 ?、賰善叫兄本€所成的角:規(guī)定為.

 ?、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

  ③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

  (2)直線和平面所成的角

 ?、倨矫娴钠叫芯€與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

  ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

  在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

  (3)二面角和二面角的平面角

 ?、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

 ?、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼?

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 ?、芮蠖娼堑?a href='http://m.athomedrugdetox.com/way/' target='_blank'>方法

  定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  2018高考數(shù)學知識點

  集合與函數(shù)

  1、進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解、

  2、在應用條件時,易A忽略是空集的情況

  3、你會用補集的思想解決有關問題嗎?

  4、簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

  5、你知道“否命題”與“命題的否定形式”的區(qū)別、

  6、求解與函數(shù)有關的問題易忽略定義域優(yōu)先的原則、

  7、判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關于原點對稱、

  8、求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域、

  9、原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)、例如:、

  10、你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負)和導數(shù)法

  11、 求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示、

  12、求函數(shù)的值域必須先求函數(shù)的定義域。

  13、如何應用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題)、這幾種基本應用你掌握了嗎?

  14、解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?

  (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

  15、三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數(shù)求最值?

  16、用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

  17、“實系數(shù)一元二次方程有實數(shù)解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?

點擊下一頁分享更多高考數(shù)學知識點

3038785