高一數(shù)學(xué)集合與函數(shù)概念知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)集合與函數(shù)概念知識(shí)點(diǎn)總結(jié)
集合的知識(shí)點(diǎn)和函數(shù)是息息相關(guān)的,所以兩者一定要結(jié)合起來學(xué)習(xí)。以下是學(xué)習(xí)啦小編為您整理的關(guān)于高一數(shù)學(xué)集合與函數(shù)概念知識(shí)點(diǎn)總結(jié)的相關(guān)資料,希望對(duì)您有所幫助。
高一數(shù)學(xué)知識(shí)點(diǎn):集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:
1.元素的確定性;2.元素的互異性;3.元素的無序性
說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意?。撼S脭?shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。
?、僬Z言描述法:例:{不是直角三角形的三角形}
?、跀?shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分類:
1.有限集含有有限個(gè)元素的集合
2.無限集含有無限個(gè)元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
高一數(shù)學(xué)知識(shí)點(diǎn):集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
?、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一數(shù)學(xué)集合與函數(shù)概念知識(shí)點(diǎn)總結(jié)相關(guān)文章:
1.《集合與函數(shù)概念》知識(shí)點(diǎn)匯總
2.高一數(shù)學(xué)第一章集合知識(shí)點(diǎn)歸納
3.高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)
4.高一上學(xué)期數(shù)學(xué)復(fù)習(xí)要點(diǎn)
5.集合與函數(shù)概念數(shù)學(xué)教案及反思
6.高一上學(xué)期數(shù)學(xué)必修內(nèi)容總結(jié)