不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)易錯(cuò)點(diǎn)

高一數(shù)學(xué)易錯(cuò)點(diǎn)

時(shí)間: 鳳婷983 分享

高一數(shù)學(xué)易錯(cuò)點(diǎn)

  高一數(shù)學(xué)學(xué)習(xí)過(guò)程中,有很多易錯(cuò)點(diǎn)需要掌握,具體有哪些呢?下面是學(xué)習(xí)啦小編給大家?guī)?lái)的高一數(shù)學(xué)易錯(cuò)點(diǎn),希望對(duì)你有幫助。

  高一數(shù)學(xué)易錯(cuò)點(diǎn)(一)

  易錯(cuò)點(diǎn)1 遺忘空集致誤

  由于空集是任何非空集合的真子集,因此B=∅時(shí)也滿足B⊆A.解含有參數(shù)的集合問(wèn)題時(shí),要特別注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況.

  易錯(cuò)點(diǎn)2 忽視集合元素的三性致誤

  集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求.

  易錯(cuò)點(diǎn)3 混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論.

  易錯(cuò)點(diǎn)4 充分條件、必要條件顛倒致誤

  對(duì)于兩個(gè)條件A,B,如果A⇒B成立,則A是B的充分條件,B是A的必要條件;如果B⇒A成立,則A是B的必要條件,B是A的充分條件;如果A⇔B,則A,B互為充分必要條件.解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問(wèn)題時(shí)一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷.

  易錯(cuò)點(diǎn)5 “或”“且”“非”理解不準(zhǔn)致誤

  命題p∨q真⇔p真或q真,命題p∨q假⇔p假且q假(概括為一真即真);命題p∧q真⇔p真且q真,命題p∧q假⇔p假或q假(概括為一假即假);綈p真⇔p假,綈p假⇔p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補(bǔ)”對(duì)應(yīng)起來(lái)進(jìn)行理解,通過(guò)集合的運(yùn)算求解.

  易錯(cuò)點(diǎn)6 函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法.對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可.

  易錯(cuò)點(diǎn)7 判斷函數(shù)的奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù).

  易錯(cuò)點(diǎn)8 函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn).函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題.

  易錯(cuò)點(diǎn)9 導(dǎo)數(shù)的幾何意義不明致誤

  函數(shù)在一點(diǎn)處的導(dǎo)數(shù)值是函數(shù)圖像在該點(diǎn)處的切線的斜率.但在許多問(wèn)題中,往往是要解決過(guò)函數(shù)圖像外的一點(diǎn)向函數(shù)圖像上引切線的問(wèn)題,解決這類問(wèn)題的基本思想是設(shè)出切點(diǎn)坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義寫出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點(diǎn)處的切線”,還是“過(guò)某點(diǎn)的切線”.

  易錯(cuò)點(diǎn)10 導(dǎo)數(shù)與極值關(guān)系不清致誤

  f′(x0)=0只是可導(dǎo)函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個(gè)條件,但只有這個(gè)條件還不夠,還要考慮是否滿足f′(x)在x0兩側(cè)異號(hào).另外,已知極值點(diǎn)求參數(shù)時(shí)要進(jìn)行檢驗(yàn).

  高一數(shù)學(xué)易錯(cuò)點(diǎn)(二)

  易錯(cuò)點(diǎn)1 三角函數(shù)的單調(diào)性判斷致誤

  對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sin x的單調(diào)性相反,就不能再按照函數(shù)y=sin x的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決.對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷.

  易錯(cuò)點(diǎn)2 圖像變換方向把握不準(zhǔn)致誤

  函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的圖像可看作由下面的方法得到:(1)把正弦曲線上的所有點(diǎn)向左(當(dāng)φ>0時(shí))或向右(當(dāng)φ<0時(shí))平行移動(dòng)|φ|個(gè)單位長(zhǎng)度;(2)再把所得各點(diǎn)橫坐標(biāo)縮短(當(dāng)ω>1時(shí))或伸長(zhǎng)(當(dāng)0<ω<1時(shí))到原來(lái)的1ω倍(縱坐標(biāo)不變);(3)再把所得各點(diǎn)的縱坐標(biāo)伸長(zhǎng)(當(dāng)A>1時(shí))或縮短(當(dāng)0

  易錯(cuò)點(diǎn)3 忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視.

  易錯(cuò)點(diǎn)4 向量夾角范圍不清致誤

  解題時(shí)要全面考慮問(wèn)題.數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況.

  易錯(cuò)點(diǎn)5 an與Sn關(guān)系不清致誤

  在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2.這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn).

  易錯(cuò)點(diǎn)6 對(duì)等差、等比數(shù)列的定義、性質(zhì)理解錯(cuò)誤

  等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列.

  易錯(cuò)點(diǎn)7 數(shù)列中的最值錯(cuò)誤

  數(shù)列問(wèn)題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題.數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一.在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定.

  易錯(cuò)點(diǎn)8 錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)致誤

  錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和.基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問(wèn)題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問(wèn)題.這里最容易出現(xiàn)問(wèn)題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理.

  易錯(cuò)點(diǎn)9 不等式性質(zhì)應(yīng)用不當(dāng)致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤.

  易錯(cuò)點(diǎn)10 忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件.對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到.

  高一數(shù)學(xué)易錯(cuò)點(diǎn)(三)

  易錯(cuò)點(diǎn)1 解含參數(shù)的不等式時(shí)分類討論不當(dāng)致誤

  解形如ax2+bx+c>0的不等式時(shí),首先要考慮對(duì)x2的系數(shù)進(jìn)行分類討論.當(dāng)a=0時(shí),這個(gè)不等式是一次不等式,解的時(shí)候還要對(duì)b,c進(jìn)一步分類討論;當(dāng)a≠0且Δ>0時(shí),不等式可化為a(x-x1)(x-x2)>0,其中x1,x2(x10,則不等式的解集是(-∞,x1)∪(x2,+∞),如果a<0,則不等式的解集是(x1,x2).

  易錯(cuò)點(diǎn)2 不等式恒成立問(wèn)題處理不當(dāng)致誤

  解決不等式恒成立問(wèn)題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法.通過(guò)最值產(chǎn)生結(jié)論.應(yīng)注意恒成立與存在性問(wèn)題的區(qū)別,如對(duì)任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問(wèn)題,但對(duì)存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問(wèn)題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系.

  易錯(cuò)點(diǎn)3 忽視三視圖中的實(shí)、虛線致誤

  三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長(zhǎng)對(duì)正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實(shí)線畫出,不可見的輪廓線用虛線畫出,這一點(diǎn)很容易疏忽.

  易錯(cuò)點(diǎn)4 面積、體積的計(jì)算轉(zhuǎn)化不靈活致誤

  面積、體積的計(jì)算既需要學(xué)生有扎實(shí)的基礎(chǔ)知識(shí),又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法.(1)還臺(tái)為錐的思想:這是處理臺(tái)體時(shí)常用的思想方法.(2)割補(bǔ)法:求不規(guī)則圖形面積或幾何體體積時(shí)常用.(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積.(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問(wèn)題,常畫出軸截面進(jìn)行分析求解.

  易錯(cuò)點(diǎn)5 隨意推廣平面幾何中的結(jié)論致誤

  平面幾何中有些概念和性質(zhì),推廣到空間中不一定成立.例如“過(guò)直線外一點(diǎn)只能作一條直線與已知直線垂直”“垂直于同一條直線的兩條直線平行”等性質(zhì)在空間中就不成立.

  易錯(cuò)點(diǎn)6 對(duì)折疊與展開問(wèn)題認(rèn)識(shí)不清致誤

  折疊與展開是立體幾何中的常用思想方法,此類問(wèn)題注意折疊或展開過(guò)程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒(méi)變,還要注意位置關(guān)系的變化.

  易錯(cuò)點(diǎn)7 空間點(diǎn)、線、面位置關(guān)系不清致誤

  關(guān)于空間點(diǎn)、線、面位置關(guān)系的組合判斷類試題是高考全面考查考生對(duì)空間位置關(guān)系的判定和性質(zhì)掌握程度的理想題型,歷來(lái)受到命題者的青睞,解決這類問(wèn)題的基本思路有兩個(gè):一是逐個(gè)尋找反例作出否定的判斷或逐個(gè)進(jìn)行邏輯證明作出肯定的判斷;二是結(jié)合長(zhǎng)方體模型或?qū)嶋H空間位置(如課桌、教室)作出判斷,但要注意定理應(yīng)用準(zhǔn)確、考慮問(wèn)題全面細(xì)致.

  易錯(cuò)點(diǎn)8 忽視斜率不存在致誤

  在解決兩直線平行的相關(guān)問(wèn)題時(shí),若利用l1∥l2⇔k1=k2來(lái)求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會(huì)導(dǎo)致錯(cuò)解.這類問(wèn)題也可以利用如下的結(jié)論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗(yàn),看看兩條直線是不是重合從而確定問(wèn)題的答案.對(duì)于解決兩直線垂直的相關(guān)問(wèn)題時(shí)也有類似的情況.利用l1⊥l2⇔k1·k2=-1時(shí),要注意其前提條件是k1與k2必須同時(shí)存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論.

  易錯(cuò)點(diǎn)9 忽視零截距致誤

  解決有關(guān)直線的截距問(wèn)題時(shí)應(yīng)注意兩點(diǎn):一是求解時(shí)一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問(wèn)題時(shí)要進(jìn)行分類討論,不要漏掉截距為零時(shí)的情況.

  易錯(cuò)點(diǎn)10 忽視圓錐曲線定義中的條件致誤

  利用橢圓、雙曲線的定義解題時(shí),要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點(diǎn)是缺一不可的:其一,絕對(duì)值;其二,2a<|F1F2|.如果不滿足第一個(gè)條件,動(dòng)點(diǎn)到兩定點(diǎn)的距離之差為常數(shù),而不是差的絕對(duì)值為常數(shù),那么其軌跡只能是雙曲線的一支.
看了<高一數(shù)學(xué)易錯(cuò)點(diǎn)>的人還看了:

1.高一數(shù)學(xué)必修一易錯(cuò)點(diǎn)

2.高一數(shù)學(xué)期末考易錯(cuò)知識(shí)點(diǎn)總結(jié)

3.高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

4.高一數(shù)學(xué)不等式知識(shí)點(diǎn)總結(jié)

5.高一上數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

2845378