不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 > 高一數(shù)學函數(shù)的應用題和答案

高一數(shù)學函數(shù)的應用題和答案

時間: 夏萍1132 分享

高一數(shù)學函數(shù)的應用題和答案

  函數(shù)是數(shù)學中常見的考點,下面是學習啦小編給大家?guī)淼挠嘘P于高一數(shù)學關于函數(shù)的應用題和答案的介紹,希望能夠幫助到大家。

  高一數(shù)學函數(shù)的應用題及答案解析

  1.設U=R,A={x|x0},B={x|x1},則A?UB=( )

  A{x|01} B.{x|0

  C.{x|x0} D.{x|x1}

  【解析】 ?UB={x|x1},A?UB={x|0

  【答案】 B

  2.若函數(shù)y=f(x)是函數(shù)y=ax(a0,且a1)的反函數(shù),且f(2)=1,則f(x)=( )

  A.log2x B.12x

  C.log12x D.2x-2

  【解析】 f(x)=logax,∵f(2)=1,

  loga2=1,a=2.

  f(x)=log2x,故選A.

  【答案】 A

  3.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是( )

  A.f(x)=ln x B.f(x)=1x

  C.f(x)=|x| D.f(x)=ex

  【解析】 ∵y=1x的定義域為(0,+).故選A.

  【答案】 A

  4.已知函數(shù)f(x)滿足:當x4時,f(x)=12x;當x4時,f(x)=f(x+1).則f(3)=( )

  A.18 B.8

  C.116 D.16

  【解析】 f(3)=f(4)=(12)4=116.

  【答案】 C

  5.函數(shù)y=-x2+8x-16在區(qū)間[3,5]上( )

  A.沒有零點 B.有一個零點

  C.有兩個零點 D.有無數(shù)個零點

  【解析】 ∵y=-x2+8x-16=-(x-4)2,

  函數(shù)在[3,5]上只有一個零點4.

  【答案】 B

  6.函數(shù)y=log12(x2+6x+13)的值域是( )

  A.R B.[8,+)

  C.(-,-2] D.[-3,+)

  【解析】 設u=x2+6x+13

  =(x+3)2+44

  y=log12u在[4,+)上是減函數(shù),

  ylog124=-2,函數(shù)值域為(-,-2],故選C.

  【答案】 C

  7.定義在R上的偶函數(shù)f(x)的部分圖象如圖所示,則在(-2,0)上,下列函數(shù)中與f(x)的單調(diào)性不同的是( )

  A.y=x2+1 B.y=|x|+1

  C.y=2x+1,x0x3+1,x0 D.y=ex,x0e-x,x0

  【解析】 ∵f(x)為偶函數(shù),由圖象知f(x)在(-2,0)上為減函數(shù),而y=x3+1在(-,0)上為增函數(shù).故選C.

  【答案】 C

  8.設函數(shù)y=x3與y=12x-2的圖象的交點為(x0,y0),則x0所在的區(qū)間是( )

  A.(0,1) B.(1,2)

  C(2,3) D.(3,4)

  【解析】 由函數(shù)圖象知,故選B.

  【答案】 B

  9.函數(shù)f(x)=x2+(3a+1)x+2a在(-,4)上為減函數(shù),則實數(shù)a的取值范圍是( )

  A.a-3 B.a3

  C.a5 D.a=-3

  【解析】 函數(shù)f(x)的對稱軸為x=-3a+12,

  要使函數(shù)在(-,4)上為減函數(shù),

  只須使(-,4)?(-,-3a+12)

  即-3a+124,a-3,故選A.

  【答案】 A

  10.某新品牌電視投放市場后第1個月銷售100臺,第2個月銷售200臺,第3個月銷售400臺,第4個月銷售790臺,則下列函數(shù)模型中能較好反映銷量y與投放市場的月數(shù)x之間的關系的是( )

  A.y=100x B.y=50x2-50x+100

  C.y=502x D.y=100log2x+100

  【解析】 對C,當x=1時,y=100;

  當x=2時,y=200;

  當x=3時,y=400;

  當x=4時,y=800,與第4個月銷售790臺比較接近.故選C.

  【答案】 C

  11.設log32=a,則log38-2 log36可表示為( )

  A.a-2 B.3a-(1+a)2

  C.5a-2 D.1+3a-a2

  【解析】 log38-2log36=log323-2log3(23)

  =3log32-2(log32+log33)

  =3a-2(a+1)=a-2.故選A.

  【答案】 A

  12.已知f(x)是偶函數(shù),它在[0,+)上是減函數(shù).若f(lg x)f(1),則x的取值范圍是( )

  A.110,1 B.0,110(1,+)

  C.110,10 D.(0,1)(10,+)

  【解析】 由已知偶函數(shù)f(x)在[0,+)上遞減,

  則f(x)在(-,0)上遞增,

  f(lg x)f(1)?01,或lg x0-lg x1

  ?110,或0-1?110,

  或110

  x的取值范圍是110,10.故選C.

  【答案】 C

  高一數(shù)學關于集合的知識點

  第一章集合與函數(shù)概念

  一、集合有關概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性;2.元素的互異性;3.元素的無序性

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意啊:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關于屬于的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作aA,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

 ?、僬Z言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

  4、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關系

  1.包含關系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.相等關系(55,且55,則5=5)

  實例:設A={x|x2-1=0}B={-1,1}元素相同

  結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

  ①任何一個集合是它本身的子集。AA

 ?、谡孀蛹?如果AB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 ?、廴绻鸄B,BC,那么AC

 ?、苋绻鸄B同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。


猜你感興趣:

1.趣味數(shù)學腦筋急轉(zhuǎn)彎帶答案

2.高中數(shù)學導數(shù)測試題及答案

3.高中數(shù)學不等式習題及答案

4.小學數(shù)學智力題及參考答案

5.高中數(shù)學排列練習題及答案

6.數(shù)學智力題帶答案

3784865