不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高中數(shù)學(xué)等差數(shù)列求和公式分析

高中數(shù)學(xué)等差數(shù)列求和公式分析

時間: 夏萍1132 分享

高中數(shù)學(xué)等差數(shù)列求和公式分析

  在數(shù)學(xué)的學(xué)習(xí)中等差求和公式是學(xué)習(xí)的重點的內(nèi)容,而且喲U幣極愛哦多的公式需要學(xué)生記憶,下面學(xué)習(xí)啦的小編將為大家?guī)淼炔钋蠛凸降慕榻B,希望能夠幫助到大家。

  高中數(shù)學(xué)等差數(shù)列求和公式

  公式Sn=(a1+an)n/2

  Sn=na1+n(n-1)d/2;(d為公差)

  Sn=An2+Bn;A=d/2,B=a1-(d/2)

  和為Sn

  首項a1

  末項an

  公差d

  項數(shù)n

  通項

  首項=2×和÷項數(shù)-末項

  末項=2×和÷項數(shù)-首項

  末項=首項+(項數(shù)-1)×公差

  項數(shù)=(末項-首項)(除以)/公差+1

  公差=如:1+3+5+7+……99公差就是3-1

  d=an-a

  性質(zhì):

  若m、n、p、q∈N

 ?、偃鬽+n=p+q,則am+an=ap+aq

 ?、谌鬽+n=2q,則am+an=2aq

  注意:上述公式中an表示等差數(shù)列的第n項。

  高中數(shù)學(xué)一次函數(shù)知識點

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì):

  1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

  2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1.作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  3.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b>0時,直線必通過一、二象限;

  當(dāng)b=0時,直線通過原點

  當(dāng)b<0時,直線必通過三、四象限。

  特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限

  四、確定一次函數(shù)的表達(dá)式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達(dá)式。

  (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b.

  (2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解這個二元一次方程,得到k,b的值。

  (4)最后得到一次函數(shù)的表達(dá)式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt.

  2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft.

  六、常用公式:(不全,希望有人補充)

  1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)


猜你感興趣:

1.高中數(shù)學(xué)的聽課需要注意的方面介紹

2.高一數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法總結(jié)

3.高中數(shù)學(xué)老師教學(xué)案例反思

4.高二數(shù)學(xué)公式定理記憶口訣大全

5.高中數(shù)學(xué)趣味記憶口訣

3787684