初三數(shù)學的知識點
初三數(shù)學的知識點
對于初三數(shù)學的學習,要掌握好每一個重要的知識點,這樣才有利于你在考試中的發(fā)揮。下面是學習啦小編收集整理的初三數(shù)學的知識點以供大家學習。
初三數(shù)學的知識點(一)
三角形的重心定義:
重心:重心是三角形三邊中線的交點。
三角形的重心的性質(zhì):
1.重心到頂點的距離與重心到對邊中點的距離之比為2:1。
2.重心和三角形3個頂點組成的3個三角形面積相等。
3.重心到三角形3個頂點距離的平方和最小。
4.在平面直角坐標系中,重心的坐標是頂點坐標的算術(shù)平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);
空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3
5.重心和三角形3個頂點的連線的任意一條連線將三角形面積平分。
6.重心是三角形內(nèi)到三邊距離之積最大的點。
初三數(shù)學的知識點(二)
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負倒數(shù),則兩直線互相垂直。那么
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
初三數(shù)學的知識點(三)
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。
三角形的外心的性質(zhì):
1.三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;
2三角形的外接圓有且只有一個,即對于給定的三角形,其外心是唯一的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;
3.銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點重合。
在△ABC中
4.OA=OB=OC=R
5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6.S△ABC=abc/4R
>>>下一頁更多精彩“初三數(shù)學的知識點”