九年級數(shù)學測量檢測試題附答案
放開往日的數(shù)學學習中的緊張,用一顆平常心去輕松面對九年級數(shù)學考試。以下是學習啦小編為你整理的九年級數(shù)學測量檢測試題,希望對大家有幫助!
九年級數(shù)學測量檢測試題
1.已知在△ABC中,∠A=30°,AB=1米,現(xiàn)要用1:100的比例尺把△ABC畫在紙上記作△A′B′C′,那么A′B′=________,∠A′=______.
2.在某時刻的陽光照耀下,身高160cm的阿美的影長為80cm,她身旁的旗桿影長10m,則旗桿高為_______m.
3.在比例尺是1:38000的某交通游覽圖上,某隧道長約7cm,它的實際長度約為( )
A.0.266km B.2.66km C.26.6km D.266km
4.如圖1,雨后初晴,一學生在運動場上玩耍,他的身高為AB,從他前面不遠的一小塊積水處,他看到了旗桿頂端的倒影C點,于是他向前走了兩步,到達積水處,又繼續(xù)向前走,到達旗桿底部時他共走了18步(假設他的步幅是不變的),已知他眼部A點高1.5m,則旗桿DE的高度為多少?(學生一步長為1m)
解:由題意得△ABC∽△DEC.
∴ ①
∴DE=21 ,∴旗桿DE高度為21 m. ② 圖1
(1)上述解題過程有無錯誤?如有,錯在第______步,錯誤原因是________.
(2)請寫出正確解題的過程.
◆典例分析
如圖,九年級(1)班課外活動小組利用標桿測量學校旗桿的高度,已知標桿高度CD=3cm,標桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標桿CD的水平距離DF=2m,求旗桿AB的高度.
分析:求旗桿AB的高度,就是求AH+BH的值,已知BH=EF,所以只要利用三角形相似求出AH即可.
解: ∵CD⊥FB,AB⊥FB,∴CD∥AB,
∴△CGE∽△AHE.
∴ ,AH=11.9.
∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).
點撥:此題關鍵是把實際問題轉化為數(shù)學模型,利用相似解決.
◆課下作業(yè)
●拓展提高
1.如圖2,要測量河兩岸相對的兩點A、B間的距離,先從B處出發(fā),與AB成90°角方向,向前走50米到C處立一根標桿,然后方向不變繼續(xù)朝前走10米到D處,在D處沿垂直于BD的方向再走5米到達E處,使A(目標物),C(標桿)與E在同一直線上,則AB的長為_________.
圖2 圖3
2.如圖3,小明站在C處看甲乙兩樓樓頂上的點A和點E,C、E、A三點在同一直線上,點B、D分別在點E、A的正下方且D、B、C三點在同一直線上,B、C相距20米,D、C相距40米,乙樓高BE為15米,甲樓高AD為(小明身高忽略不計)( )
A.40米 B.20米 C.15米 D.30米
3.如圖4,要測量A、B兩點間的距離,在O點設樁,取OA的中點C,OB的中點D,測得CD=28m,求A、B兩點間的距離.
圖4
4.如圖5,是一山谷的橫斷面示意圖,寬AA′為15m,用曲尺(兩直尺相交成直角)從山谷兩側測量出OA=1m,OB=3m,O′A′=0.5m,O′B=3′(點A、O、O′、A′在同一條水平線上),則該山谷的深h為________m.
圖5 圖6 圖7
5.如圖6,晚上小亮在路燈下散步,在小亮由A處到走B處這一過程中,他在地上的影子( )
A.逐漸變短 B.逐漸變長 C.先變短后變長 D.先變長后變短
6.如圖7,王華晚上由路燈A下的B處走到C時,測得影子CD的長為1米,繼續(xù)往前走3米到達E處時,測得影子EF的長為2米,已知王華的身高是1.5米,那么路燈A的高度AB等于( )
A.4.5米 B.6米 C.7.2米 D.8米
●體驗中考
1.(2009年濰坊)如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點測得 ,在C點測得 ,又測得 米,則小島B到公路l的距離為( )米.
A.25 B. C. D.
2、(2009年湖北十堰市)如圖,在一次數(shù)學課外活動中,小明同學在點P處測得教學樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進60米到達C處,此時測得教學樓A恰好位于正北方向,辦公樓B正好位于正南方向.求教學樓A與辦公樓B之間的距離(結果精確到0.1米).
(供選用的數(shù)據(jù): ≈1.414, ≈1.732)
九年級數(shù)學測量檢測試題答案
1.1厘米 35°
2.20
3.B
4.(1)② 相似三角形對應邊對應錯誤
(2)正確解答:由題意得△ABC∽△DEC.
∴ ,∴DE=12.
故旗桿DE的高度為12m.
拓展提高:
1.25米
2.D
3.解:∵ ,∠COD=∠AOB,
∴△OCD∽△OAB,∴ .
∵CD=28m,∴AB=56m.
故A、B兩點間的距離為56m.
4.30
5.C
6.B
體驗中考:
1、B
2、解:由題意可知
∠ACP= ∠BCP= 90°,∠APC=30°,∠BPC=45°
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴
∴
≈60+20×1.732 =94.64≈94.6(米)
答:教學樓A與辦公樓B之間的距離大約為94.6米.