不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 高中數(shù)學(xué)函數(shù)論文

高中數(shù)學(xué)函數(shù)論文

時(shí)間: 芷瓊1026 分享

高中數(shù)學(xué)函數(shù)論文

  函數(shù)是高中數(shù)學(xué)第一個(gè)比較抽象,難理解的概念之一。下面學(xué)習(xí)啦小編給你分享高中數(shù)學(xué)函數(shù)論文,歡迎閱讀。

  高中數(shù)學(xué)函數(shù)論文篇一

  【摘要】隨著教學(xué)內(nèi)容的推進(jìn),許多更為復(fù)雜的數(shù)學(xué)知識(shí)滲透到課堂教學(xué)中.對(duì)于高中階段的數(shù)學(xué)教學(xué),函數(shù)是引進(jìn)的一種重要的數(shù)學(xué)模型.這一模型在其他學(xué)科或是我們的日常生活中都有深遠(yuǎn)的影響,尤為重要的一點(diǎn),函數(shù)的思想貫穿于整個(gè)高中數(shù)學(xué)的始終,是學(xué)生學(xué)習(xí)高中數(shù)學(xué)的重點(diǎn)之一.因此,本文重點(diǎn)闡述了在進(jìn)行函數(shù)教學(xué)時(shí)應(yīng)注意的幾個(gè)方面,以及如何利用函數(shù)的圖像去解決問(wèn)題.

  【關(guān)鍵詞】高中數(shù)學(xué);函數(shù);函數(shù)圖像;解題應(yīng)用

  初中階段是學(xué)生接觸到函數(shù)這一數(shù)學(xué)思想的時(shí)期,此時(shí)的函數(shù)思想是較為簡(jiǎn)單,是比較容易理解的.當(dāng)學(xué)生進(jìn)入高中以后,新的函數(shù)概念逐漸增加,內(nèi)容較為復(fù)雜,主要以映射的觀點(diǎn)來(lái)闡明函數(shù).這就要求學(xué)生對(duì)自己的知識(shí)理解提出更高的要求,深入理解函數(shù)的內(nèi)涵,熟悉并應(yīng)用之解決問(wèn)題.還需明確的一點(diǎn)是,函數(shù)的思想來(lái)源并不抽象,它來(lái)源于我們的現(xiàn)實(shí)生活.人類(lèi)社會(huì)一直都是運(yùn)動(dòng)變化著的,主要是以量的變化為主要的呈現(xiàn)方式,為了解決社會(huì)中各個(gè)變量間關(guān)系的問(wèn)題,函數(shù)的思想應(yīng)運(yùn)而生,被人類(lèi)運(yùn)用于解決現(xiàn)實(shí)生活中的問(wèn)題.

  一、進(jìn)行函數(shù)教學(xué)時(shí)應(yīng)注意的幾個(gè)問(wèn)題

  函數(shù)思想貫穿于整個(gè)中學(xué)階段包括初中與高中,并且在整個(gè)數(shù)學(xué)教學(xué)過(guò)程中具有主線作用.教師的教學(xué)應(yīng)著重這一點(diǎn).

  1.初始階段:興趣為先,使學(xué)生產(chǎn)生學(xué)習(xí)動(dòng)機(jī)

  教師應(yīng)在學(xué)習(xí)的每個(gè)學(xué)習(xí)階段把握好側(cè)重點(diǎn).在學(xué)生剛開(kāi)始接觸到函數(shù)思想的時(shí)候,就應(yīng)該以學(xué)生的學(xué)習(xí)興趣為先導(dǎo).通過(guò)日常生活的一些例子和提問(wèn)的導(dǎo)入方式,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,使學(xué)生產(chǎn)生學(xué)習(xí)動(dòng)機(jī).與此同時(shí),教師應(yīng)注意讓學(xué)生正確把握函數(shù)的定義式,抽象概括函數(shù)的數(shù)學(xué)定義.函數(shù)關(guān)系是兩個(gè)變量的對(duì)應(yīng)關(guān)系,如何闡釋得更為具體一些,函數(shù)的圖像則是函數(shù)的直觀展示.尤其在直角坐標(biāo)系中,函數(shù)圖像就能形象生動(dòng)地把變量x和y展示出來(lái).

  2.深入學(xué)習(xí)階段:建立模型,使知識(shí)具體化

  隨著函數(shù)學(xué)習(xí)的深入,學(xué)生不可能長(zhǎng)期處于抽象的討論中,必須佐以重要的實(shí)習(xí)模型.這些實(shí)習(xí)模型可以幫助學(xué)生理解函數(shù)和其他數(shù)學(xué)知識(shí)之間的關(guān)系.關(guān)于指數(shù)函數(shù)的單調(diào)性這一性質(zhì),指數(shù)的底數(shù)相同,那么值的大小就可通過(guò)函數(shù)的單調(diào)性來(lái)判斷.但是必須注意的一點(diǎn)是有一些函數(shù)的單調(diào)性是有區(qū)間的,不能一概而論.教師還需多指導(dǎo)學(xué)生認(rèn)識(shí)一些具體的函數(shù)模型,比如冪函數(shù)、對(duì)數(shù)函數(shù)和三角函數(shù)等.三角函數(shù)在日常生活中運(yùn)用的范圍相當(dāng)廣泛.

  3.應(yīng)用階段:聯(lián)系生活實(shí)際,解決問(wèn)題

  由于上文所述,我們了解到,函數(shù)并不是憑空捏造,而是隨著現(xiàn)實(shí)社會(huì)生活中的需要而產(chǎn)生的,因此,必然是來(lái)源于生活、應(yīng)用于生活了.比如,我們?nèi)粘I钪兴佑|到的很多場(chǎng)景都有函數(shù)規(guī)律或是函數(shù)應(yīng)用的存在,如機(jī)場(chǎng)、酒店等.一個(gè)酒店的采購(gòu)部采購(gòu)物品包括食物的數(shù)量都是有嚴(yán)格規(guī)定的,他們是如何界定的呢?他們會(huì)根據(jù)客流量的多少來(lái)確定應(yīng)采購(gòu)物品的種類(lèi)及數(shù)量,那么這些變量之間的關(guān)系就是一個(gè)函數(shù)關(guān)系.

  二、利用函數(shù)圖像解決問(wèn)題

  函數(shù)的圖像猶如砍柴的柴刀一樣,是一項(xiàng)非常重要的解決數(shù)學(xué)問(wèn)題的工具.數(shù)學(xué)是一門(mén)較為抽象的學(xué)科,因此,以圖像作為教學(xué)輔助,幫助學(xué)生們深入了解數(shù)學(xué)思想是相當(dāng)科學(xué)的.

  利用函數(shù)的圖像解答填空、選擇題,所用時(shí)間較為簡(jiǎn)短,學(xué)生在考試中可盡量使用這種方法.

  2.利用函數(shù)圖像解答應(yīng)用題

  舉例說(shuō)明

  有一座拋物線形拱橋(如圖),正常水位時(shí)橋下河面寬20 m,河面距拱頂4 m.

  (1)在如圖所示的平面直角坐標(biāo)系中,求出拋物線解析式;

  (2)為了保證過(guò)往船只順利航行,橋下水面的寬度不得小于18 m.求水面在正常水位基礎(chǔ)上漲多少米時(shí),就會(huì)影響過(guò)往船只.

  分析根據(jù)拋物線在坐標(biāo)系的特殊位置,本題可以設(shè)拋物線的頂點(diǎn)式、交點(diǎn)式或者一般式,求出拋物線解析式,再運(yùn)用解析式解決實(shí)際問(wèn)題.

  解首先要畫(huà)出拋物線的圖像(有了直觀圖像就能夠明了解題思路).

  三、結(jié)束語(yǔ)

  綜上所述,數(shù)學(xué)思想中的函數(shù)思想是較為重要的,因此,教師與學(xué)生都應(yīng)當(dāng)高度重視.教師在仔細(xì)梳理教學(xué)重點(diǎn)之后,注意結(jié)合學(xué)生的學(xué)習(xí)階段,采用不一樣的教學(xué)策略,幫助學(xué)生更快更好地掌握函數(shù)的思想,并且讓學(xué)生學(xué)會(huì)利用函數(shù)圖像去解答不僅是考試中還有生活中的問(wèn)題,學(xué)以致用.

  高中數(shù)學(xué)函數(shù)論文篇二

  數(shù)學(xué)是作為衡量一個(gè)人能力的一門(mén)重要學(xué)科,高中數(shù)學(xué)是初中數(shù)學(xué)的提高和深化,初中數(shù)學(xué)在教材表達(dá)上采用形象通俗的語(yǔ)言,研究對(duì)象多是常量,側(cè)重于定量、計(jì)算和形象思維,而高中數(shù)學(xué)語(yǔ)言表達(dá)抽象,邏輯嚴(yán)密,思維嚴(yán)謹(jǐn),知識(shí)連貫性和系統(tǒng)性強(qiáng)。

  傳統(tǒng)的數(shù)學(xué)教學(xué)模式是以教師、課堂、書(shū)本為中心的,課堂教學(xué)是一種固定不變的模式,即復(fù)習(xí)新課-講授新課-練習(xí)鞏固。即使在學(xué)習(xí)環(huán)節(jié)中注重了“預(yù)習(xí)”,也是為了更好地“講授新課”,為了更好、更快地讓學(xué)生接受“新知”。久而久之,客觀上導(dǎo)致了學(xué)生思維的依賴(lài)性和惰性,因而也就根本談不上讓學(xué)生主動(dòng)學(xué)習(xí)、主動(dòng)探索,以致于喪失了創(chuàng)造力。上課基本采用滿(mǎn)堂灌的方法,不管學(xué)生聽(tīng)不聽(tīng)得懂,反正講了,學(xué)生就該仔細(xì)聽(tīng),就應(yīng)該會(huì),課上作筆記,課后大量作業(yè)做鞏固。但是,事實(shí)上有些學(xué)生根本聽(tīng)不懂,不知道教師講了些什么,課下只能抄作業(yè),結(jié)果學(xué)生疲勞厭學(xué),教師疲勞厭教。長(zhǎng)此以往,學(xué)生一旦習(xí)慣了這種被動(dòng)的學(xué)習(xí),學(xué)習(xí)的主動(dòng)性就會(huì)漸漸喪失。我們可以清楚地看出,在這樣的教學(xué)過(guò)程中,教師以“講”為中心的教學(xué)方法早已經(jīng)過(guò)時(shí)的,從學(xué)生的潛能開(kāi)發(fā)、思維拓展、身心 發(fā)展 、自主健全的角度來(lái)看,是非常不利的。

  高中數(shù)學(xué)課程應(yīng)提倡利用信息技術(shù)來(lái)呈現(xiàn)以往教學(xué)中難以呈現(xiàn)的課程內(nèi)容,鼓勵(lì)學(xué)生運(yùn)用計(jì)算機(jī)、計(jì)算器等進(jìn)行探索和發(fā)現(xiàn)。社會(huì)的進(jìn)步對(duì)教學(xué)內(nèi)容提出了新的要求,同時(shí)也為教學(xué)提供新的技術(shù)手段,為學(xué)習(xí)提供新的學(xué)習(xí)方式。將信息技術(shù)運(yùn)用于數(shù)學(xué)教學(xué),彌補(bǔ)了傳統(tǒng)教學(xué)的不足,提高了教學(xué)效率,同時(shí)也培養(yǎng)了學(xué)生的信息技術(shù)技能和解決問(wèn)題的能力。

  一般來(lái)說(shuō),高中學(xué)生要探究出某個(gè)數(shù)學(xué)問(wèn)題或者定理,需要花費(fèi)大量時(shí)間,而這絕不是能在短短的幾十分鐘內(nèi)就得到解決,高中學(xué)生的主要任務(wù)還是學(xué)習(xí)前人的知識(shí)與方法,任何脫離知識(shí)基礎(chǔ)的探究都是盲目的。應(yīng)該承認(rèn),講授式教學(xué)不利于培養(yǎng)學(xué)生的創(chuàng)新能力,但是,它不能和“填鴨式”教學(xué)簡(jiǎn)單地劃上等號(hào)。

  從小學(xué)到高中絕大多數(shù)同學(xué)投入了大量的時(shí)間與精力.然而并非人人都是成功者,許多小學(xué)、初中數(shù)學(xué)學(xué)科成績(jī)的佼佼者,進(jìn)入高中階段,第一個(gè)跟頭就栽在數(shù)學(xué)上。高中數(shù)學(xué)學(xué)習(xí)是中學(xué)階段承前啟后的關(guān)鍵時(shí)期,不少學(xué)生升入高中后,能否適應(yīng)高中數(shù)學(xué)的學(xué)習(xí),是擺在高中新生面前的一個(gè)亟待解決的問(wèn)題,除了學(xué)習(xí)環(huán)境、教學(xué)內(nèi)容和教學(xué)因素等外部因素外,同學(xué)們還應(yīng)該轉(zhuǎn)變觀念、提高認(rèn)識(shí)和改進(jìn)學(xué)法。

  面對(duì)眾多初中學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,我對(duì)他們的學(xué)習(xí)狀態(tài)進(jìn)行了研究,調(diào)查表明,造成成績(jī)滑坡的主要原因有以下幾個(gè)方面:

  1學(xué)習(xí)的興趣。要在教學(xué)中真正做到學(xué)生愿意主動(dòng)的學(xué)習(xí)知識(shí), 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,自此變得更加的重要。數(shù)學(xué)教學(xué)激發(fā)學(xué)生學(xué)習(xí)興趣是重要的一環(huán),從教學(xué)心理學(xué)角度上講,如果抓住了學(xué)生的某些心理特征,對(duì)教學(xué)將有一個(gè)巨大的推動(dòng)作用。興趣的培養(yǎng)就是一個(gè)重要的方面,興趣能激發(fā)大腦組織加工,有利于發(fā)現(xiàn)事物的新線索,并進(jìn)行探索創(chuàng)造,興趣是學(xué)習(xí)的最佳營(yíng)養(yǎng)劑和催化劑,學(xué)生對(duì)學(xué)習(xí)有興趣,對(duì)學(xué)習(xí)材料的反映也就是最清晰,思維活動(dòng)是最積極最有效,學(xué)習(xí)就能取得事半功倍的效果。

  2學(xué)生自身存在的問(wèn)題:(1).學(xué)習(xí)不主動(dòng)。許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴(lài)心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán)。表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”。 (2)學(xué)法不得當(dāng)。老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專(zhuān)心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、 總結(jié) 、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。

  3。學(xué)生的創(chuàng)新意識(shí)。學(xué)生的創(chuàng)新意識(shí)主要是指對(duì)自然界和社會(huì)中的數(shù)學(xué)現(xiàn)象具有好奇心、探究心,不斷追求新知,獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問(wèn)題,進(jìn)行探索和研究。而現(xiàn)在的大部分學(xué)生都缺乏創(chuàng)新意識(shí),照搬教科書(shū)和老師的方法學(xué)習(xí),致使學(xué)習(xí)呆板,乏味。

  教師應(yīng)從數(shù)學(xué)創(chuàng)新意識(shí)的培養(yǎng)上入手,在平時(shí)的教學(xué)過(guò)程中真正把提高學(xué)生的數(shù)學(xué)創(chuàng)新意識(shí)落到實(shí)處,激發(fā)學(xué)生潛能。著名美籍華人學(xué)者楊振寧教授曾指出,中外學(xué)生的主要差距在于,中國(guó)學(xué)生缺乏創(chuàng)新意識(shí),創(chuàng)新能力有待于加強(qiáng);而具有創(chuàng)新能力的人才將是21世紀(jì)最具競(jìng)爭(zhēng)力,最受歡迎的人才。提高學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力是我們面臨的重要課題。

  因此,新的數(shù)學(xué)課程強(qiáng)調(diào),學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,要有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。在教學(xué)過(guò)程中,堅(jiān)持貫徹理論聯(lián)系實(shí)際的原則,創(chuàng)設(shè)生活情景,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。滲透應(yīng)用意識(shí),促進(jìn)非智力因素的發(fā)展和發(fā)揮作用,突出實(shí)踐性,有利于培養(yǎng)出適應(yīng)知識(shí)經(jīng)濟(jì)時(shí)代的創(chuàng)新型人才。

  而現(xiàn)在,數(shù)學(xué)教育依舊任重而道遠(yuǎn)。

  高中數(shù)學(xué)函數(shù)論文篇三

  函數(shù)是高中數(shù)學(xué)第一個(gè)比較抽象,難理解的概念之一。它描述了自然界中量的依存關(guān)系,通過(guò)刻畫(huà)現(xiàn)實(shí)世界中量與量之間的數(shù)量關(guān)系,反映了一個(gè)量隨著另一個(gè)量變化而變化之規(guī)律。函數(shù)的思想方法就是提取問(wèn)題的數(shù)學(xué)本征,建立函數(shù)關(guān)系,并利用函數(shù)的性質(zhì)研究、解決問(wèn)題的一種數(shù)學(xué)思想方法。

  函數(shù)是一門(mén)應(yīng)用非常廣泛的數(shù)學(xué)工具,因此它也是中學(xué)數(shù)學(xué)中的一個(gè)重要內(nèi)容。其重要性不僅僅體現(xiàn)在自然科學(xué)、體現(xiàn)在工程技術(shù)上,也逐漸廣泛地體現(xiàn)在人文社會(huì)科學(xué)上:世界萬(wàn)物之間的聯(lián)系與變化都有可能以各種不同的函數(shù)作為它們的數(shù)學(xué)模型??v觀整個(gè)中學(xué)教學(xué)內(nèi)容,函數(shù)的思想便如一根紅線把中學(xué)教學(xué)的各個(gè)分支緊緊地連在了一起,構(gòu)成有機(jī)的知識(shí)網(wǎng)絡(luò)。它幾乎貫串于整個(gè)中學(xué)數(shù)學(xué), 無(wú)論是不等式,還是數(shù)列,無(wú)論是三角函數(shù),還是集合,都可以看到它的影子。一些看來(lái)與函數(shù)風(fēng)馬牛不相及的問(wèn)題,我們?nèi)粲煤瘮?shù)的思想去思考,往往可以簡(jiǎn)化解題過(guò)程,突破思維死角,進(jìn)而解決問(wèn)題.下試舉幾例,供有意者饗之。

  一、函數(shù)思想在集合相關(guān)問(wèn)題中的應(yīng)用

  例1:①已知集合,N={y|y=3x2+1,x∈R},則M∩N= 。

  析:此題主要考察集合N中元素為y,即二次函數(shù)y=3x2+1的值域?yàn)?[1,+∞],可知答案為{x|x>1}。

 ?、谝阎癁镮=R,A={x|x2-3x+2≤0},B={x|x2-2ax+a≤0,a∈R},且 ,求a取值范圍。

  析:此題主要考察二次函數(shù)y=x2-2ax+a≤0解集的情況。

  解:當(dāng)<0即0

  當(dāng)=0時(shí),a=0或a=1。

  若a=0,則x=0,不滿(mǎn)足題意。

  若a=1,則x=1,滿(mǎn)足題意。

  當(dāng)>0時(shí),兩個(gè)解必須在[1,2]內(nèi),即有:�

  綜上所述,0

  在集合相關(guān)問(wèn)題中,一元二次不等式、一元二次方程的題目隨處可見(jiàn),它們相互轉(zhuǎn)化,許多時(shí)候都需求出一元二次不等式解集的情況,難度雖不高,但往往會(huì)因考慮問(wèn)題不全面而失分,應(yīng)引起重視。

  二、函數(shù)思想在證明不等式中的應(yīng)用

  例2:設(shè)a,b∈R,求證:

  析:直接采用不等式變換去證明還是比較不容易的。然而觀察題目特點(diǎn),可以把不等式兩邊看成函數(shù)的兩個(gè)值,因此可否構(gòu)造函數(shù),而后應(yīng)用該函數(shù)的單調(diào)性求解呢?

  令,由易知:f(x)在區(qū)間(-1,+∞)上是增函數(shù),

  因?yàn)?≤|a+b|≤|a|+|b|,所以f(|a+b|)≤f(|a|+|b|)

  即

  巧妙極了!直接繞開(kāi)了繁瑣的變形與計(jì)算,整個(gè)解題過(guò)程顯得非常簡(jiǎn)潔。不但使學(xué)生拓寬了眼界,提高了能力;而且?guī)?lái)了一種心情上的驚奇與精神上的震撼,使他們深深的體會(huì)到數(shù)學(xué)的奇妙,提高了學(xué)習(xí)數(shù)學(xué)的興趣。

  例3:[1993年全國(guó)高考理(29)] 已知關(guān)于x的實(shí)系數(shù)二次方程x2+ax+b=0有兩個(gè)實(shí)數(shù)根α、β。證明:如果|α|<2,|β|<2,那么2|a|<4+b

  析:作一次函數(shù) ∵α+β

  =-a,αβ=b,∴ ,取x1=2(α+

  β)-(4+αβ)=-(2-α)(2-β)<0,x2=2(α+β)+(4+αβ)=(2+α)(2+β)>0,則有f(x1)=-1,f(x2)=1。由f(x)的單調(diào)性知-1=f(x1)

  又|b|=|α||β|<4,∴4+b>0,∴2|a|<4+b。

  函數(shù)的思想在歷年的高考題中,一直是必須考察的重點(diǎn)之一。而考慮到不等式與函數(shù)的特殊關(guān)系,我們必須對(duì)這種題型加以足夠的重視。本題通過(guò)構(gòu)造一次函數(shù),巧妙的將不等式問(wèn)題化為函數(shù)問(wèn)題來(lái)解決,整個(gè)問(wèn)題得以輕松解決。

  三、函數(shù)思想在數(shù)列相關(guān)問(wèn)題中的體現(xiàn)與應(yīng)用

  例4:設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0。

  (1)求公差d的取值范圍;

  (2)指出S1,S2,…,S12中哪一個(gè)值最大,并說(shuō)明理由。

  【分析】題(1)根據(jù)題設(shè)條件列出關(guān)于公差d的不等式組求出d的取值范圍;題(2)求等差數(shù)列的前n項(xiàng)和的最大值,其求法比較多,總的思路有如下2種:一是通項(xiàng)研究法,即當(dāng)d<0時(shí),求出使得an>0且an+1<0的n值;當(dāng)d>0時(shí),求出使得an<0且an+1>0的n值;二是前n項(xiàng)和 研究法,即列出 的表達(dá)式(當(dāng)d≠0時(shí),它是關(guān)于n的二次函數(shù)),求表達(dá)式的最大(小)值。

  解不等式組得:-   (2)解法一:由d<0,得a1>a2>a3>…>a12>a13。因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,則Sn就是S1,S2…S12中的最大值。由于S12=6(a6+a7)>0,S13

  =13a7<0,所以a6>-a7>0,a7<0,故S6最大。

  解法二:

  當(dāng)-   解法三:由d<0,得a1>a2>a3>…>a12>a13。因此,若在1≤n≤12中存在自然數(shù)n,使得an>0,an+1<0,則Sn就是S1,S2…S12中的最大值。

  故S6最大。

  【評(píng)注】 本題考查等差數(shù)列、不等式等知識(shí),利用解不等式及二次函數(shù)的圖像與性質(zhì)求Sn的最大值,這是函數(shù)思想在數(shù)列中的一大表現(xiàn)。

  四、函數(shù)思想在三角函數(shù)相關(guān)問(wèn)題中的應(yīng)用。

  例5:已知函數(shù)f(x)=-sin2x+sinx+a,當(dāng)f(x)=0有實(shí)數(shù)解時(shí),求a的取值范圍。

  析:由f(x)=0得-sin2x+sinx+a=0,那么根據(jù)該等式如何求a的取值范圍呢?當(dāng)然可以換元,設(shè)t=sinx,將問(wèn)題轉(zhuǎn)化為一元二次方程-t2+t+a=0在[-1,1]上的根的分布問(wèn)題。但是,總是覺(jué)得太麻煩了,經(jīng)深思后,覺(jué)得可以先作如下變形:

  分離a得:

  如果把a(bǔ)看成是x的函數(shù),問(wèn)題轉(zhuǎn)化為求函數(shù)的值域。

  因?yàn)閟inx∈[-1,1],所以

  故當(dāng)時(shí),f(x)=0有實(shí)數(shù)解。問(wèn)題輕松解決。

  當(dāng)然,函數(shù)思想還涉及到其他方面:比如立體幾何、解析幾何等。高考中對(duì)函數(shù)思想的考查,大都與其它知識(shí)相結(jié)合,以綜合題形式出現(xiàn),在平時(shí)得教學(xué)中,應(yīng)注重函數(shù)與方程、不等式、數(shù)列、集合之間的聯(lián)系。注意它們所體現(xiàn)的知識(shí)綜合的形式,只有平時(shí)注重知識(shí)積累,才能舉一反三,觸類(lèi)旁通,將復(fù)雜問(wèn)題化歸為簡(jiǎn)單問(wèn)題,從而解決問(wèn)題,提高學(xué)生綜合運(yùn)用知識(shí)的能力。

猜你感興趣的:

1.高中數(shù)學(xué)論文范文3篇

2.淺談高中數(shù)學(xué)模型論文

3.淺談高一數(shù)學(xué)相關(guān)論文

4.高中數(shù)學(xué)評(píng)職稱(chēng)論文范文

5.關(guān)于高中數(shù)學(xué)論文范文

2853373