中考數(shù)學(xué)的考試攻略及提分技巧
中考數(shù)學(xué)的考試攻略及提分技巧
中考數(shù)學(xué)的備考進(jìn)行得如何?數(shù)學(xué)考試的公路而大家了解過(guò)嗎?能幫助大家提高數(shù)學(xué)成績(jī)。下面由學(xué)習(xí)啦小編為大家提供關(guān)于中考數(shù)學(xué)的考試攻略及提分技巧,希望對(duì)大家有幫助!
中考數(shù)學(xué)的考試攻略
攻略一:概念記清,基礎(chǔ)夯實(shí)。數(shù)學(xué)≠做題,千萬(wàn)不要忽視最基本的概念、公理、定理和公式,特別是“不定項(xiàng)選擇題”就要靠清晰的概念來(lái)明辨對(duì)錯(cuò),如果概念不清就會(huì)感覺(jué)模棱兩可,最終造成誤選。因此,要把已經(jīng)學(xué)過(guò)的四本教科書中的概念整理出來(lái),通過(guò)讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
攻略二:適當(dāng)做題,巧做為王。有的同學(xué)埋頭題??嗫鄴暝?,輔導(dǎo)書做掉一大堆卻鮮有提高,這就是陷入了做題的誤區(qū)。數(shù)學(xué)需要實(shí)踐,需要大量做題,但要“埋下頭去做題,抬起頭來(lái)想題”,在做題中關(guān)注思路、方法、技巧,要“苦做”更要“巧做”.考試中時(shí)間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯(cuò)。
攻略三:前后聯(lián)系,縱橫貫通。在做題中要注重發(fā)現(xiàn)題與題之間的內(nèi)在聯(lián)系,絕不能“傻做”.在做一道與以前相似的題目時(shí),要會(huì)通過(guò)比較,發(fā)現(xiàn)規(guī)律,穿透實(shí)質(zhì),以達(dá)到“觸類旁通”的境界。特別是幾何題中的輔助線添法很有規(guī)律性,在做題中要特別記牢。
攻略四:記錄錯(cuò)題,避免再犯。俗話說(shuō),“一朝被蛇咬,十年怕井繩”,可是同學(xué)們常會(huì)一次又一次地掉入相似甚至相同的"陷阱"里。因此,我建議大家在平時(shí)的做題中就要及時(shí)記錄錯(cuò)題,還要想一想為什么會(huì)錯(cuò)、以后要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,中考當(dāng)中是“分分必爭(zhēng)”,一分也失不得。
攻略五:集中兵力,攻下弱點(diǎn)。每個(gè)人都有自己的“軟肋”,如果試題中涉及到你的薄弱環(huán)節(jié),一定會(huì)成為你的最痛。因此一定要通過(guò)短時(shí)間的專題學(xué)習(xí),集中優(yōu)勢(shì)兵力,打一場(chǎng)漂亮的殲滅戰(zhàn),避免變成“瘸腿”。
中考數(shù)學(xué)的提分技巧
1、針對(duì)模考問(wèn)題,查漏補(bǔ)缺抓薄弱
要認(rèn)真、客觀地對(duì)模擬考試進(jìn)行分析,看看哪些題失了分,弄清失分原因。比如,是基本知識(shí)沒(méi)掌握好,思維能力跟不上,還是學(xué)習(xí)態(tài)度不端正,審題不 仔細(xì),或者是學(xué)習(xí)方法、學(xué)習(xí)習(xí)慣不好,要進(jìn)行全方位的剖析。因?yàn)榫嚯x中考的時(shí)間有限,要堅(jiān)持“把時(shí)間用在刀刃上”,補(bǔ)習(xí)“瘸腿科目”,對(duì)薄弱環(huán)節(jié)進(jìn)行加強(qiáng) 分析看看哪科沒(méi)考好,冷靜分析丟分原因,判斷該科是不是弱科。如果是,則要抓緊時(shí)間,多補(bǔ)薄弱學(xué)科的基礎(chǔ)知識(shí),避免中考時(shí)“瘸腿科目”拉分。
2、收集整理錯(cuò)題,選擇真題適度訓(xùn)練
沖刺復(fù)習(xí)期間,要有針對(duì)性地進(jìn)行知識(shí)復(fù)習(xí),盡量多做歷年中考真題。選擇課外習(xí)題或練習(xí)卷不是越多越好,而是要針對(duì)自己薄弱點(diǎn)進(jìn)行針對(duì)性訓(xùn)練。在 做完一套真題試卷后,要及時(shí)核對(duì)答案,看看哪些題目丟分,弄清丟分原因。通過(guò)選擇性地做中考真題,與復(fù)習(xí)配套的習(xí)題要注意精選,突出典型性、通用性,能舉 一反三,不輕易重復(fù)訓(xùn)練做,通過(guò)適當(dāng)訓(xùn)練可了解中考命題范圍、題目深淺以及相關(guān)題型。同時(shí),平時(shí)反復(fù)易錯(cuò)的習(xí)題有目的地通過(guò)復(fù)印、剪貼的方式匯總,專門謄 寫在專用的錯(cuò)題本上,或用紅筆做上記號(hào),便于下一次復(fù)習(xí)。
復(fù)習(xí)中需要適當(dāng)精選試題進(jìn)行模擬訓(xùn)練,考查復(fù)習(xí)的效果,及時(shí)作出調(diào)整。模擬的試題不僅可以檢驗(yàn)復(fù)習(xí)效果,也可以去體會(huì)中考命題的思路和命題的延續(xù)性,還可以擴(kuò)大自己做題的寬度和廣度。
要嘗試對(duì)各種題目進(jìn)行歸類,要在理解知識(shí)和基本規(guī)律的基礎(chǔ)上,逐步掌握解決問(wèn)題的思維方法,提高自己解決問(wèn)題的能力,不要盲目重復(fù)性做題。
中考數(shù)學(xué)的常用解題方法
1.配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求 函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2.因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3.換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4.判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。
5.待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
猜你喜歡:
2.九個(gè)成就中考數(shù)學(xué)高分的答題技巧