初二數(shù)學(xué)仁愛版知識點
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些初二數(shù)學(xué)的知識點,希望對大家有所幫助。
相似、全等三角形
1、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
2、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
3、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
4、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
5、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
6、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
7、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
8、性質(zhì)定理2相似三角形周長的比等于相似比
9、性質(zhì)定理3相似三角形面積的比等于相似比的平方
10、邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
11、角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
12、推論有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
13、邊邊邊公理有三邊對應(yīng)相等的兩個三角形全等
14、斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
15、全等三角形的對應(yīng)邊、對應(yīng)角相等
等腰、直角三角形
1、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等
2、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
3、等腰三角形的頂角平分線、底邊上的中線和高互相重合
4、推論3等邊三角形的各角都相等,并且每一個角都等于60°
5、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
6、推論1三個角都相等的三角形是等邊三角形
7、推論2有一個角等于60°的等腰三角形是等邊三角形
8、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
9、直角三角形斜邊上的中線等于斜邊上的一半
八年級數(shù)學(xué)知識點總結(jié)
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
八年級數(shù)學(xué)學(xué)習(xí)方法技巧
一該記的記,該背的背,不要以為理解了就行
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學(xué)同樣也離不開記憶。
因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個公式,將會對今后的學(xué)習(xí)造成很大的麻煩,因為今后的學(xué)習(xí)將會大量地用到這三個公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。打一個比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。
初二數(shù)學(xué)仁愛版知識點相關(guān)文章: