數(shù)學(xué)人教版必修一提綱
做數(shù)學(xué)題速度慢,不僅會延長平時的作業(yè)時間,更會影響在考試中的做題速度。以下是小編給大家整理的數(shù)學(xué)人教版必修一提綱,希望對大家有所幫助,歡迎閱讀!
數(shù)學(xué)人教版必修一提綱
一、一次函數(shù)定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)
二次函數(shù)
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax’2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x’2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b’2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b’2-4ac>0時,拋物線與x軸有2個交點。
Δ=b’2-4ac=0時,拋物線與x軸有1個交點。
Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,
當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax’2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。
函數(shù)與x軸交點的橫坐標即為方程的根。
學(xué)好數(shù)學(xué)的方法和技巧是什么
數(shù)學(xué)其實不簡單,要想學(xué)好數(shù)學(xué)確實要費一番心思,但是數(shù)學(xué)真學(xué)進去了會感覺很有意思,根本沒那么困擾大家。數(shù)學(xué)知識點很多很雜,只有踏踏實實一步一個腳印才能把數(shù)學(xué)學(xué)好。另外,學(xué)好數(shù)學(xué)不是一朝一夕的事,大家要有持久的耐力,最好有動力,做好打持久戰(zhàn)的準備。
在數(shù)學(xué)學(xué)習(xí)上,首先要告訴大家,不是教出來的,是悟出來的,是自學(xué)出來的。不是看會的,是算會的。具體來說,數(shù)學(xué)光靠老師上課講的那些東西是學(xué)不會的,也就是所謂的看花容易繡花難,只有經(jīng)過自己的親身實踐才能知道自己到底會不會,擺脫其他人的思路,自己做出來的東西才不容易忘記。
在學(xué)習(xí)數(shù)學(xué)時,最簡單有效的方法就是多做題,通過做題來鞏固所學(xué)的知識,把公式記得更扎實牢固一些。同時,還有一個工序就是課前預(yù)習(xí),大家也不要小瞧了這個過程,因為預(yù)習(xí)也是一個自學(xué)的過程,這最能鍛煉同學(xué)們的思維能力以及獨立解題能力,這一步做好了數(shù)學(xué)成績能有一個很大提升和進步。
如何提高數(shù)學(xué)成績
一、課內(nèi)重視聽講,課后及時復(fù)習(xí)
接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學(xué)習(xí)效率,找到適合自己的學(xué)習(xí)方法,上課時要跟住老師的思路,積極思考。下課之后要及時復(fù)習(xí),遇到不懂的地方要及時去問,在做作業(yè)的時候,先把老師課堂上講解的內(nèi)容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急于翻看答案。還要經(jīng)常性的總結(jié)和復(fù)習(xí),把知識點結(jié)合起來,變成自己的知識體系。
二、多做題,養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績。剛開始做題的時候先以書上習(xí)題為主,答好基礎(chǔ),然后逐漸增加難度,開拓思路,練習(xí)各種類型的解題思路,對于容易出現(xiàn)錯誤的題型,應(yīng)該記錄下來,反復(fù)加以聯(lián)系。在做題的時候應(yīng)該養(yǎng)成良好的解題習(xí)慣,集中注意力,這樣才能進入最佳的狀態(tài),形成習(xí)慣,這樣在考試的時候才能運用自如。
三、調(diào)整心態(tài),正確對待考試
考試的時候,大部分的題都是基礎(chǔ)題,只有少數(shù)幾道題時比較難的題,所以我們要調(diào)整好心態(tài),鼓勵自己,在做題的時候認真思考,不要浮躁,在考試之前做好準備,做一做常規(guī)的題型,不要為了趕時間而增加做題速度,要有條不紊的進行。
數(shù)學(xué)人教版必修一提綱相關(guān)文章:
★ 高一數(shù)學(xué)必修一知識點總結(jié)歸納