高二數(shù)學知識點期末
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。小編高二頻道為你整理了《人教版高二數(shù)學知識點總結(jié)》,助你金榜題名!
高二數(shù)學知識點期末
在中國古代把數(shù)學叫算術,又稱算學,最后才改為數(shù)學。
1.任意角
(1)角的分類:
①按旋轉(zhuǎn)方向不同分為正角、負角、零角.
②按終邊位置不同分為象限角和軸線角.
(2)終邊相同的角:
終邊與角相同的角可寫成+k360(kZ).
(3)弧度制:
①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.
②規(guī)定:正角的弧度數(shù)為正數(shù),負角的弧度數(shù)為負數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑.
③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關,僅與角的大小有關.
④弧度與角度的換算:360弧度;180弧度.
⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù).
(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.
3.三角函數(shù)線
設角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan=AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.
高二數(shù)學知識點期末
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數(shù)法(適用于多項式函數(shù))
復合函數(shù)法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復合函數(shù)法
應用:把函數(shù)值進行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關于y軸對稱
y=f(x)→y=-f(x),關于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關于直線x=a對稱;
高二數(shù)學知識點期末
直線與圓:
1、直線的傾斜角的范圍是
在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,
⑵斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關系:
(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
5、點到直線的距離公式;
兩條平行線與的距離是
6、圓的標準方程:.⑵圓的一般方程:
注意能將標準方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關系,通常轉(zhuǎn)化為圓心距與半徑的關系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
高二數(shù)學知識點期末相關文章: