不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高考輔導(dǎo)資料 >

高三數(shù)學(xué)的知識(shí)點(diǎn)和公式

時(shí)間: 廣輝4575 分享

在第一輪復(fù)習(xí)結(jié)束后,緊接著就要進(jìn)入第二輪復(fù)習(xí)了。在第二輪復(fù)習(xí)中主要內(nèi)容是對(duì)知識(shí)的靈活運(yùn)用,也更側(cè)重于知識(shí)的融會(huì)貫通。下面是小編整理的高三數(shù)學(xué)的知識(shí)點(diǎn)和公式,希望能夠幫助到大家。

高三數(shù)學(xué)的知識(shí)點(diǎn)和公式

銳角三角函數(shù)公式

sinα=∠α的對(duì)邊/斜邊

cosα=∠α的鄰邊/斜邊

tanα=∠α的對(duì)邊/∠α的鄰邊

cotα=∠α的鄰邊/∠α的對(duì)邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

三倍角公式推導(dǎo)

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導(dǎo)公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin2a)+(1-2sin2a)sina

=3sina-4sin3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos2a-1)cosa-2(1-sin2a)cosa

=4cos3a-3cosa

sin3a=3sina-4sin3a

=4sina(3/4-sin2a)

=4sina[(√3/2)2-sin2a]

=4sina(sin260°-sin2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos3a-3cosa

=4cosa(cos2a-3/4)

=4cosa[cos2a-(√3/2)2]

=4cosa(cos2a-cos230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

積化和差

sinαsinβ=[cos(α-β)-cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

誘導(dǎo)公式

sin(-α)=-sinα

cos(-α)=cosα

tan(—a)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA=sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

萬(wàn)能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

(4)對(duì)于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得證

同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

一個(gè)推導(dǎo)

利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個(gè)防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

(2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.

注:前兩種方法也可用來(lái)證明一個(gè)數(shù)列為等比數(shù)列.

高三數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)

1.不等式的定義

在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

2.比較兩個(gè)實(shí)數(shù)的大小

兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對(duì)稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開(kāi)方:a>b>0?(n∈N,n≥2).

復(fù)習(xí)指導(dǎo)

1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的`代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

3.“兩條常用性質(zhì)”

(1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,則

①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

高三數(shù)學(xué)第二輪重點(diǎn)復(fù)習(xí)內(nèi)容

專題一:函數(shù)與不等式,以函數(shù)為主線,不等式和函數(shù)綜合題型是考點(diǎn)

函數(shù)的性質(zhì):著重掌握函數(shù)的單調(diào)性,奇偶性,周期性,對(duì)稱性。這些性質(zhì)通常會(huì)綜合起來(lái)一起考察,并且有時(shí)會(huì)考察具體函數(shù)的這些性質(zhì),有時(shí)會(huì)考察抽象函數(shù)的這些性質(zhì)。

一元二次函數(shù):一元二次函數(shù)是貫穿中學(xué)階段的一大函數(shù),初中階段主要對(duì)它的一些基礎(chǔ)性質(zhì)進(jìn)行了了解,高中階段更多的是將它與導(dǎo)數(shù)進(jìn)行銜接,根據(jù)拋物線的開(kāi)口方向,與x軸的交點(diǎn)位置,進(jìn)而討論與定義域在x軸上的擺放順序,這樣可以判斷導(dǎo)數(shù)的正負(fù),最終達(dá)到求出單調(diào)區(qū)間的目的,求出極值及最值。

不等式:這一類問(wèn)題常常出現(xiàn)在恒成立,或存在性問(wèn)題中,其實(shí)質(zhì)是求函數(shù)的最值。當(dāng)然關(guān)于不等式的解法,均值不等式,這些不等式的基礎(chǔ)知識(shí)點(diǎn)需掌握,還有一類較難的綜合性問(wèn)題為不等式與數(shù)列的結(jié)合問(wèn)題,掌握幾種不等式的放縮技巧是非常必要的。

專題二:數(shù)列。以等差等比數(shù)列為載體,考察等差等比數(shù)列的通項(xiàng)公式,求和公式,通項(xiàng)公式和求和公式的關(guān)系,求通項(xiàng)公式的幾種常用方法,求前n項(xiàng)和的幾種常用方法,這些知識(shí)點(diǎn)需要掌握。

專題三:三角函數(shù),平面向量,解三角形。三角函數(shù)是每年必考的知識(shí)點(diǎn),難度較小,選擇,填空,解答題中都有涉及,有時(shí)候考察三角函數(shù)的公式之間的互相轉(zhuǎn)化,進(jìn)而求單調(diào)區(qū)間或值域;有時(shí)候考察三角函數(shù)與解三角形,向量的綜合性問(wèn)題,當(dāng)然正弦,余弦定理是很好的工具。向量可以很好得實(shí)現(xiàn)數(shù)與形的轉(zhuǎn)化,是一個(gè)很重要的知識(shí)銜接點(diǎn),它還可以和數(shù)學(xué)的一大難點(diǎn)解析幾何整合。

專題四:立體幾何。立體幾何中,三視圖是每年必考點(diǎn),主要出現(xiàn)在選擇,填空題中。大題中的立體幾何主要考察建立空間直角坐標(biāo)系,通過(guò)向量這一手段求空間距離,線面角,二面角等。

另外,需要掌握棱錐,棱柱的性質(zhì),在棱錐中,著重掌握三棱錐,四棱錐,棱柱中,應(yīng)該掌握三棱柱,長(zhǎng)方體??臻g直線與平面的位置關(guān)系應(yīng)以證明垂直為重點(diǎn),當(dāng)然??疾斓姆椒殚g接證明。

專題五:解析幾何。直線與圓錐曲線的位置關(guān)系,動(dòng)點(diǎn)軌跡的探討,求定值,定點(diǎn),最值這些為近年來(lái)考的熱點(diǎn)問(wèn)題。解析幾何是考生所公認(rèn)的難點(diǎn),它的難點(diǎn)不是對(duì)題目無(wú)思路,不是不知道如何化解所給已知條件,難點(diǎn)在于如何巧妙地破解已知條件,如何巧妙地將復(fù)雜的運(yùn)算量進(jìn)行化簡(jiǎn)。當(dāng)然這里邊包含了一些常用方法,常用技巧,需要學(xué)生去記憶,體會(huì)。

專題六:概率統(tǒng)計(jì),算法,復(fù)數(shù)。算發(fā)與復(fù)數(shù)一般會(huì)出現(xiàn)在選擇題中,難度較小,概率與統(tǒng)計(jì)問(wèn)題著重考察學(xué)生的閱讀能力和獲取信息的能力,與實(shí)際生活關(guān)系密切,學(xué)生需學(xué)會(huì)能有效得提取信息,翻譯信息。做到這一點(diǎn)時(shí),題目也就不攻自破了。

專題七:極坐標(biāo)與參數(shù)方程,幾何證明。這部分所考察的題目比較簡(jiǎn)單,主要出現(xiàn)在選擇,填空題中,學(xué)生需要熟記公式。

1882766