不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 > 最新高三數(shù)學復習知識點

最新高三數(shù)學復習知識點

時間: 楚琪0 分享

最新高三數(shù)學復習知識點2022

總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規(guī)律性認識的一種書面材料,下面是小編給大家?guī)淼淖钚赂呷龜?shù)學復習知識點,以供大家參考!

最新高三數(shù)學復習知識點

1、有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

2、判定兩個平面平行的方法:

(1)根據(jù)定義——證明兩平面沒有公共點;

(2)判定定理——證明一個平面內的兩條相交直線都平行于另一個平面;

(3)證明兩平面同垂直于一條直線。

3、兩個平面平行的主要性質:

(1)由定義知:“兩平行平面沒有公共點”;

(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;

(3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

(5)夾在兩個平行平面間的平行線段相等;

(6)經(jīng)過平面外一點只有一個平面和已知平面平行。

高三數(shù)學重要知識點歸納

一、充分條件和必要條件

當命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。

二、充分條件、必要條件的常用判斷法

1、定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可

2、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

3、集合法

在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

若A?B,則p是q的充分條件。

若A?B,則p是q的必要條件。

若A=B,則p是q的充要條件。

若A?B,且B?A,則p是q的既不充分也不必要條件。

三、知識擴展

1、四種命題反映出命題之間的內在聯(lián)系,要注意結合實際問題,理解其關系(尤其是兩種等價關系)的產生過程,關于逆命題、否命題與逆否命題,也可以敘述為:

(1)交換命題的條件和結論,所得的新命題就是原來命題的逆命題;

(2)同時否定命題的條件和結論,所得的新命題就是原來的否命題;

(3)交換命題的條件和結論,并且同時否定,所得的新命題就是原命題的逆否命題。

2、由于“充分條件與必要條件”是四種命題的關系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉化為應用該命題的逆否命題進行判斷。一個結論成立的充分條件可以不止一個,必要條件也可以不止一個。

高三下冊數(shù)學知識點歸納

(一)導數(shù)第一定義

設函數(shù)y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限值為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),即導數(shù)第一定義

(二)導數(shù)第二定義

設函數(shù)y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限值為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),即導數(shù)第二定義

(三)導函數(shù)與導數(shù)

如果函數(shù)y=f(x)在開區(qū)間I內每一點都可導,就稱函數(shù)f(x)在區(qū)間I內可導。這時函數(shù)y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導函數(shù)簡稱導數(shù)。

(四)單調性及其應用

1.利用導數(shù)研究多項式函數(shù)單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

2.用導數(shù)求多項式函數(shù)單調區(qū)間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間

最新高三數(shù)學復習知識點相關文章:

高三數(shù)學復習知識點總結

高三數(shù)學復習知識點資料整理

高三數(shù)學復習重要知識點

高三數(shù)學復習知識點

高三數(shù)學知識點梳理匯總

人教版高三數(shù)學復習知識點總結

高三數(shù)學知識點總結

高三數(shù)學必考知識點復習總結

高三數(shù)學重點知識總結大全

高三數(shù)學知識點大全

1361979