不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

高三數(shù)學函數(shù)知識點

時間: 文瓊0 分享

  高三函數(shù)是數(shù)學學習的重難點,那么相關的知識點又有什么呢?下面就隨小編一起去閱讀高三數(shù)學函數(shù)的知識點,相信能帶給大家?guī)椭?/p>

  一、一次函數(shù)定義與定義式:

  自變量x和因變量y有如下關系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當b=0時,y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì):

  1.y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

  2.當x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1.作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  3.k,b與函數(shù)圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

  四、確定一次函數(shù)的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

  (1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。

  (2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解這個二元一次方程,得到k,b的值。

  (4)最后得到一次函數(shù)的表達式。

  點擊查看:高中數(shù)學知識點總結

  五、一次函數(shù)在生活中的應用:

  1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。

  六、常用公式:

  1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點:|x1-x2|/2

  3.求與y軸平行線段的中點:|y1-y2|/2

  4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

  二次函數(shù)

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:

  y=ax’2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關系:

  h=-b/2ak=(4ac-b’2)/4ax,x=(-b±√b’2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x’2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b’2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數(shù)

  Δ=b’2-4ac>0時,拋物線與x軸有2個交點。

  Δ=b’2-4ac=0時,拋物線與x軸有1個交點。

  Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,

  當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),

  即ax’2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。

  函數(shù)與x軸交點的橫坐標即為方程的根。

  二次函數(shù)y=ax’2,y=a(x-h)’2,y=a(x-h)’2+k,y=ax’2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同

  當h>0時,y=a(x-h)’2的圖象可由拋物線y=ax’2向右平行移動h個單位得到,

  當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=ax’2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)’2+k的圖象;

  當h>0,k<0時,將拋物線y=ax’2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)’2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)’2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)’2+k的圖象;

  因此,研究拋物線y=ax’2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)’2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax’2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b’2]/4a).

  3.拋物線y=ax’2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

  4.拋物線y=ax’2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b’2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax’2+bx+c=0

  (a≠0)的兩根.這兩點間的距離AB=|x-x|

  當△=0.圖象與x軸只有一個交點;

  當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

  5.拋物線y=ax’2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b’2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

  y=ax’2+bx+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)’2+k(a≠0).

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

  當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  知識點:

  1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

  2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=x的對稱圖形,因為它們互為反函數(shù)。

  (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

  (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

  (3)函數(shù)總是通過(1,0)這點。

  (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對數(shù)函數(shù)無界。

  指數(shù)函數(shù)

  指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實數(shù)集合為定義域,則只有使得

  如圖所示為a的不同大小影響函數(shù)圖形的情況。

  可以看到:

  (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點。

  (8)顯然指數(shù)函數(shù)無界。

  奇偶性

  注圖:(1)為奇函數(shù)(2)為偶函數(shù)

  1.定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言

 ?、谄妗⑴己瘮?shù)的定義域一定關于原點對稱,如果一個函數(shù)的定義域不關于原點對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。

  (分析:判斷函數(shù)的奇偶性,首先是檢驗其定義域是否關于原點對稱,然后再嚴格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結論)

  ③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義

  2.奇偶函數(shù)圖像的特征:

  定理奇函數(shù)的圖像關于原點成中心對稱圖表,偶函數(shù)的圖象關于y軸或軸對稱圖形。

  f(x)為奇函數(shù)《==》f(x)的圖像關于原點對稱

  點(x,y)→(-x,-y)

  奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。

  偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。

  3.奇偶函數(shù)運算

  (1).兩個偶函數(shù)相加所得的和為偶函數(shù).

  (2).兩個奇函數(shù)相加所得的和為奇函數(shù).

  (3).一個偶函數(shù)與一個奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).

  (4).兩個偶函數(shù)相乘所得的積為偶函數(shù).

  (5).兩個奇函數(shù)相乘所得的積為偶函數(shù).

  (6).一個偶函數(shù)與一個奇函數(shù)相乘所得的積為奇函數(shù)

高三數(shù)學函數(shù)知識點相關文章

1.高三年級數(shù)學知識點整理總結

2.高三數(shù)學函數(shù)知識點梳理

3.高三數(shù)學必考知識點匯總

4.高三數(shù)學知識點梳理匯總

5.高三數(shù)學知識點梳理

6.高三數(shù)學函數(shù)及映射的概念復習知識點

7.高三數(shù)學函數(shù)專題訓練題及答案

8.高三數(shù)學知識點考點總結大全

9.高三數(shù)學知識點考點大全

高三數(shù)學函數(shù)知識點

高三函數(shù)是數(shù)學學習的重難點,那么相關的知識點又有什么呢?下面就隨小編一起去閱讀高三數(shù)學函數(shù)的知識點,相信能帶給大家?guī)椭?一、一次函數(shù)定義與定義式: 自變量x和??
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高考數(shù)學復合函數(shù)知識點歸納
    高考數(shù)學復合函數(shù)知識點歸納

      不是任何兩個函數(shù)都可以復合成一個復合函數(shù),只有當Mx∩Du≠?時,二者才可以構成一個復合函數(shù)。下面是小編為大家精心推薦數(shù)學復合函數(shù)知識點總

  • 關于冪函數(shù)的教案范文
    關于冪函數(shù)的教案范文

      以往的教師在把握教材是,大都是有什么教什么,不能夠靈活的使用教材。而今的數(shù)學教學要求把學生的生活經(jīng)驗帶到課堂,要求在簡單的知識框架和

  • 2020高中數(shù)學冪函數(shù)教學教案
    2020高中數(shù)學冪函數(shù)教學教案

      講授新課前,做一份完美的教案,能夠更大程度的調(diào)動學生在上課時的積極性。接下來是小編為大家整理的2020高中數(shù)學冪函數(shù)教學教案,希望大家喜歡

  • 高中數(shù)學冪函數(shù)教案設計
    高中數(shù)學冪函數(shù)教案設計

      冪函數(shù)是基本初等函數(shù)之一,是高中生需要學習的數(shù)學知識點。接下來是小編為大家整理的高中數(shù)學冪函數(shù)教案設計,希望大家喜歡!  高中數(shù)學冪函

430085