不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 中考輔導(dǎo) > 初中數(shù)學(xué)圓知識點總結(jié)

初中數(shù)學(xué)圓知識點總結(jié)

時間: 吉智0 分享

2022初中數(shù)學(xué)圓知識點總結(jié)

學(xué)習(xí)時集中精力,養(yǎng)成良好學(xué)習(xí)習(xí)慣,是節(jié)省學(xué)習(xí)時間和提高學(xué)習(xí)效率的最為基本的方法。下面小編給大家?guī)沓踔袛?shù)學(xué)圓知識點總結(jié),希望大家喜歡!

初中數(shù)學(xué)圓知識點總結(jié)

1.點與圓的位置關(guān)系及其數(shù)量特征:如果圓的半徑為r,點到圓心的距離為d,則

①點在圓上<===>d=r;②點在圓內(nèi)<===>dd>r.

二.圓的對稱性:

1.與圓相關(guān)的概念:

④同心圓:圓心相同,半徑不等的兩個圓叫做同心圓。

⑤等圓:能夠完全重合的兩個圓叫做等圓,半徑相等的兩個圓是等圓。

⑥等?。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。

⑦圓心角:頂點在圓心的角叫做圓心角.

⑧弦心距:從圓心到弦的距離叫做弦心距.

2.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數(shù)條對稱軸。

3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

說明:根據(jù)垂徑定理與推論可知對于一個圓和一條直線來說,如果具備:

①過圓心;②垂直于弦;③平分弦;④平分弦所對的優(yōu)弧;⑤平分弦所對的劣弧。

上述五個條件中的任何兩個條件都可推出其他三個結(jié)論。

4.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。

推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.

三.圓周角和圓心角的關(guān)系:

1.圓周角的定義:頂點在圓上,并且兩邊都與圓相交的角,叫做圓周角.

2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.

推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;

推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;

四.確定圓的條件:

1.理解確定一個圓必須的具備兩個條件:

經(jīng)過一點可以作無數(shù)個圓,經(jīng)過兩點也可以作無數(shù)個圓,其圓心在這個兩點線段的垂直平分線上.

2.定理:不在同一直線上的三個點確定一個圓.

3.三角形的外接圓、三角形的外心、圓的內(nèi)接三角形的概念:

(1)三角形的外接圓和圓的內(nèi)接三角形:經(jīng)過一個三角形三個頂點的圓叫做這個三角形的外接圓,這個三角形叫做圓的內(nèi)接三角形.

(2)三角形的外心:三角形外接圓的圓心叫做這個三角形的外心.

(3)三角形的外心的性質(zhì):三角形外心到三頂點的距離相等.

初中數(shù)學(xué)圓知識點學(xué)習(xí)技巧

一.1、弧長公式

n°的圓心角所對的弧長l的計算公式為L=nπr/180

2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.

S=﹙n/360﹚πR2=1/2×lR

3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.

S=1/2×l×2πr=πrl

4.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數(shù)條對稱軸。

5.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

說明:根據(jù)垂徑定理與推論可知對于一個圓和一條直線來說,如果具備:

①過圓心;②垂直于弦;③平分弦;④平分弦所對的優(yōu)弧;⑤平分弦所對的劣弧。

上述五個條件中的任何兩個條件都可推出其他三個結(jié)論。

6.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。

推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.

4、弦切角定理

弦切角:圓的切線與經(jīng)過切點的弦所夾的角,叫做弦切角.

弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.

二.圓周角和圓心角的關(guān)系:

1.圓周角的定義:頂點在圓上,并且兩邊都與圓相交的角,叫做圓周角.

2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.

推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;

推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;

初中數(shù)學(xué)圓知識點復(fù)習(xí)計劃

第一、基礎(chǔ)知識系統(tǒng)化。

看到一道題,我們要知道它在考什么,我們要明確的知道每一個知識點來源于那一部分知識。牢記每一部分知識的重點,難點以及易錯點能夠大大降低我們的出錯率。就像看到分式方程一定要想到驗根,看到一元二次方程一定要想到算一下△,看到等腰三角形一定要注意分類討論并且想到三線合一。

初中學(xué)過的'所有知識都有著他最基礎(chǔ)的一部分以及較難掌握的一部分,這就對應(yīng)著我們中考要求中ABC三類不同的要求,我們對于每一部分知識都要做到心中有數(shù),尤其是幾何的模型,例如圓與切線當(dāng)中的單切線,雙切線以及三切線,相似當(dāng)中的非垂直相似,雙垂直相似以及三垂直相似模型,我們都要了然于胸,這才能使得我們做題的思路來得更快更清晰。

再者,對于構(gòu)造等腰三角形以及直角三角形來說,經(jīng)常需要討論誰是腰誰是底邊,哪個是直角邊哪個是斜邊,這里系統(tǒng)化的方法就變得特別的重要了。為了保證討論的情況不丟不落,必須要按照一定的原則進行劃分,否則拼拼湊湊就有可能有丟的有重復(fù)的。因此,我們一定要學(xué)會對于基本題型的總結(jié),對于基本知識點的歸納,以保證我們做題的順暢與嚴(yán)謹(jǐn)。

第二、基礎(chǔ)知識全面化。

為什么這個重要,因為全面化的知識能給我們提供更多的思路和更寬的解題空間。比如說三角形中重要的線段,很多同學(xué)都會說角平分線,中線和高,那么實際上還有一條非常重要的線段——中位線。這條線段盡管不是和前三條一起講的但是在求解三角形的問題當(dāng)中經(jīng)常會用到,那么如果我們做題當(dāng)中意識不到三角形中位線的問題,那么很可能就做不出輔助線。

因此將知識點規(guī)整在一個整體當(dāng)中是非常有利于我們進行聯(lián)想和應(yīng)用的。再比如,求解線段長,都能用到什么方法,大部分同學(xué)都能說出很多種,例如勾股定理,相似三角形,全等三角形,三角函數(shù),特殊三角形的性質(zhì)等等,但是諸如面積法,以及構(gòu)造平行四邊形等方法卻經(jīng)常被遺忘。這就是歸納方法的不徹底,而后者往往是解決綜合題中有可能會用到的方法,所以歸納的徹底相當(dāng)?shù)闹匾?/p>

再例如證明題中推導(dǎo)角度的問題,除了大家一直比較敏感的三線八角,在我們學(xué)過相似和全等之后,便經(jīng)常習(xí)慣于用這幾種方法求解角與角的關(guān)系,而事實上還有兩個非常重要的方法最容易被忽略,一是“三角形內(nèi)角和=180°”二是“三角形的一個外角等于與他不相鄰的兩個內(nèi)角之和”,干瞪眼就是看不出來這是外角的同學(xué)大有人在,所以,在學(xué)過的知識逐漸變得豐富之后,我們要善于整理,把學(xué)過的每一個知識點整理到一起,串成線,吊起來一串圓,要能夠知道里面一共有多少個定理,多少種提醒常見的題型;吊起一串直角,要想到什么地方能夠見到直角,直角三角形有什么性質(zhì)和作用。所以大家要全面總結(jié)每一部分考點涉及到的知識,每一種知識涉及到的解題方法。這樣才能保證我們思路開闊,方法靈活,不至于說看一道題能想出來的方法死活做不出來,應(yīng)該用到的方法死活想不到。

第三、基礎(chǔ)知識深度化。

這部分就關(guān)系到我們后面的綜合題了。深度化,也就是對于基礎(chǔ)知識的應(yīng)用與遷移。中考是沒有難題的,我們所說的難題只不過是將許多簡單的知識點有機的結(jié)合在一起,或稍作變形,或稍加隱藏。那么這部分就需要大家能夠靈活并且熟練的應(yīng)用我們的基礎(chǔ)知識進行解答。靈活運用的前提,就是對于知識點認(rèn)識的深刻。例如兩邊之和大于第三邊,兩邊之差小于第三邊。

初中數(shù)學(xué)圓知識點總結(jié)相關(guān)文章:

初中數(shù)學(xué)圓的知識點總結(jié)

初三數(shù)學(xué)圓知識點歸納有哪些

初中數(shù)學(xué)圓的知識點歸納

九年級數(shù)學(xué)下冊圓的知識點整理

初三數(shù)學(xué)知識點考點歸納總結(jié)

高考數(shù)學(xué)圓的知識點歸納

2021初中數(shù)學(xué)知識點全總結(jié)

初中數(shù)學(xué)知識點總結(jié)大全

初中數(shù)學(xué)知識點總結(jié)

初中數(shù)學(xué)基礎(chǔ)知識點歸納總結(jié)

1321174