吉布斯現(xiàn)象產(chǎn)生的原因
吉布斯現(xiàn)象產(chǎn)生的原因
吉布斯現(xiàn)象是數(shù)字濾波器由于截斷近似及頻譜突跳產(chǎn)生的,它對濾波結(jié)果有很大影響,甚至使頻率發(fā)生畸變。下面就由學(xué)習(xí)啦小編告訴大家吉布斯現(xiàn)象產(chǎn)生的原因吧!
吉布斯現(xiàn)象產(chǎn)生的原因
我們在“深入淺出的學(xué)習(xí)傅里葉變換”時曾了解到,數(shù)學(xué)界有過一場“正弦曲線能否組合成一個帶有棱角的信號”的偉大爭議,而這場爭議的男主角自然就是傅里葉和拉格朗日了。當(dāng)然兩位男主角都沒有錯,劇情也告一段落。
直到1898年,美國阿爾伯特·米切爾森做了一個諧波分析儀, 當(dāng)他測試方波時驚訝的發(fā)現(xiàn)方波的XN(t)在不連續(xù)點附近部分呈現(xiàn)起伏,這個起伏的峰值大小似乎不隨N增大而下降!于是他寫信給當(dāng)時著名的數(shù)學(xué)物理學(xué)家吉 布斯,吉布斯檢查了這一項結(jié)果,隨機發(fā)表了他的看法:隨著N增加,部分起伏就向不連續(xù)點壓縮,但是對任何有限的N值,起伏的峰值大小保持不變,這就是吉布斯現(xiàn)象。
吉布斯現(xiàn)象的解釋
吉布斯現(xiàn)象的含義是:一個不連續(xù)信號X(t) 的傅里葉級數(shù)的截斷近似XN(t),一般來說,在接近不連續(xù)點處將呈現(xiàn)高頻起伏和超量,而且,若在實際情況下利用這樣一個近似式的話,就應(yīng)該選擇足夠大的 N,以保證這些起伏擁有的總能量可以忽略。當(dāng)然,在極限情況下,近似誤差的能量是零,而且一個不連續(xù)的信號(如方波)的傅里葉級數(shù)表示是收斂的。
出現(xiàn)吉布斯現(xiàn)象其實是由于傅里葉變換本身有很多成熟的快速算法(如FFT),而且性能接近最佳,但它由于圖像數(shù)據(jù)的二維傅里葉變換實 質(zhì)上是一個二維圖像的傅里葉展開式,當(dāng)然這個二維圖像被認(rèn)為是周期性的。由于子圖像的變換系數(shù)在邊界上不連續(xù),而將造成的復(fù)原子圖像也在其邊界上不連續(xù)。 于是由復(fù)原子圖像構(gòu)成的整幅復(fù)原圖像將呈現(xiàn)隱約可見的以子圖像尺寸為單位的方塊狀結(jié)構(gòu),影響整個圖像質(zhì)量。這就是為什么傅里葉變換在分析方波時在其不連續(xù) 點上出現(xiàn)吉布斯現(xiàn)象的原因了。
吉布斯現(xiàn)象的解決方法
解決吉布斯現(xiàn)象的方法是后來研究出來的離散余弦變換(DCT),即在傅里葉級數(shù)展開式中,如果被展開的函數(shù)是實偶函數(shù),那么其傅里葉級數(shù)中只包含余弦項,再將其離散化可導(dǎo)出余弦變換。
基本思路為:將一個對稱的2N*2N像素的子圖像代替原來N*N子圖像。由于對稱性,子圖像做二維傅里葉變換,其變換系數(shù)將只剩下實數(shù)的余弦項。這樣就可以消除吉布斯現(xiàn)象了。
吉布斯效應(yīng)的定義
吉布斯函數(shù)(Gibbsfunction),系統(tǒng)的熱力學(xué)函數(shù)之一。又稱熱力勢、自由焓、吉布斯自由能等。符號G,定義為: ,式中H、T、S分別為系統(tǒng)的焓、熱力學(xué)溫度(開爾文溫度K)和熵。吉布斯函數(shù)是系統(tǒng)的廣延性質(zhì),具有能量的量綱。由于H,T,S都是狀態(tài)函數(shù),因而G也必然是一個狀態(tài)函數(shù)。
吉布斯效應(yīng)的應(yīng)用
概述
當(dāng)體系發(fā)生變化時,G也隨之變化。其改變值△G,稱為體系的吉布斯自由能變,只取決于變化的始態(tài)與終態(tài),而與變化的途徑無關(guān):△G=G終一G始 按照吉布斯自由能的定義,可以推出當(dāng)體系從狀態(tài)1變化到狀態(tài)2時,體系的吉布斯自由能變?yōu)椋骸鱃=G2一Gl=△H一△(TS) 對于等溫條件下的反應(yīng)而言,有T2=T1=T 則 △G=△H一T △S 上式稱為吉布斯一赫姆霍茲公式(亦稱吉布斯等溫方程)。由此可以看出,△G包含了△H和△S的因素,若用△G作為自發(fā)反應(yīng)方向的判據(jù)時,實質(zhì)包含了△H和△S兩方面的影響,即同時考慮到推動化學(xué)反應(yīng)的兩個主要因素。因而用△G作判據(jù)更為全面可靠。而且只要是在等溫、等壓條件下發(fā)生的反應(yīng),都可用△G作為反應(yīng)方向性的判據(jù),而大部分化學(xué)反應(yīng)都可歸人到這一范疇中,因而用△G作為判別化學(xué)反應(yīng)方向性的判據(jù)是很方便可行的。[1]
作為判據(jù)應(yīng)用
化學(xué)反應(yīng)自發(fā)性判斷: 考慮ΔH和ΔS兩個因素的影響,可分為以下四種情況 1)ΔH<0,ΔS>0;ΔG<0正向自發(fā) 2)ΔH>0,ΔS<0;ΔG>0正向非自發(fā) 3)ΔH>0,ΔS>0;升溫至某溫度時,ΔG由正值變?yōu)樨?fù)值,高溫有利于正向自發(fā) 4)ΔH<0,ΔS<0;降溫至某溫度時,ΔG由正值變?yōu)樨?fù)值,低溫有利于正向自發(fā)
吉布斯馬爾可夫隨機場
到目前為止,還沒有哪一種方法能夠有效地分析、檢測SAR圖像中所有的結(jié)構(gòu)特征,并進(jìn)行合理的重構(gòu)。隨著計算機技術(shù)的發(fā)展,計算負(fù)擔(dān)不再是障礙。馬爾可夫隨機場由于能夠有效地表征圖像數(shù)據(jù)的空間相關(guān)性,并且有優(yōu)化算法的支持,在SAR圖像處理中起著越來越重要的作用。 兩維矩形點陣上的隨機場X若滿足:
且P(X=x)>0,則稱X是以η為鄰域系統(tǒng)的馬爾可夫隨機場(MRF)。這里x,xij分別表示隨機場和隨機變量的1個實現(xiàn),ηij是點(i,j)的鄰域系統(tǒng)。 隨機場的局部特征很難表達(dá),實用中總是采用聯(lián)合概率分布。若MRF的聯(lián)合概率用高斯分布表示,稱為高斯馬爾可夫隨機場(Gauss-MRF);若采用吉布斯分布表示,稱為吉布斯馬爾可夫隨機場
式中,T表示溫度,U稱為能量函數(shù);Z是歸一化因子,稱為分割函數(shù)。吉布斯馬爾可夫隨機場(Gibbs-MRF) Gibbs-MRF主要用于圖像復(fù)原算法中,一般都和優(yōu)化的參數(shù)估計方法模擬退火相聯(lián)系。 根據(jù)能量函數(shù)的具體形式,SAR圖像處理中有3種模型,第一種是:
參數(shù)λ表征了模型描述圖像結(jié)構(gòu)特征尖銳平滑程度的能力。
猜你感興趣:
1.成功的十大因素