初二數(shù)學(xué)有哪些知識總結(jié)歸納
初二的數(shù)學(xué)是初中的關(guān)鍵知識點,所以初二學(xué)習(xí)數(shù)學(xué)不能掉以輕心。經(jīng)常對于所學(xué)知識進(jìn)行復(fù)習(xí)總結(jié)才能有效的學(xué)好數(shù)學(xué)。下面是學(xué)習(xí)啦小編分享給大家的初二數(shù)學(xué)知識總結(jié),希望大家喜歡!
初二數(shù)學(xué)知識總結(jié)一
函數(shù)
一.知識框架
二.知識概念
1.函數(shù):若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(0,0)的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點的直線,當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在函數(shù)y=kx+b中:當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。
4.已知兩點坐標(biāo)求函數(shù)解析式:待定系數(shù)法
函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。在學(xué)習(xí)本章內(nèi)容時,教師應(yīng)該多從實際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運用,在解決實際問題的同時,讓學(xué)習(xí)體會到數(shù)學(xué)的實用價值和樂趣。
初二數(shù)學(xué)知識總結(jié)二
整式的乘除與分解因式
一.知識概念
1.同底數(shù)冪的乘法法則:(m,n都是正數(shù))
2..冪的乘方法則:(m,n都是正數(shù))
3.整式的乘法
(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n).
在應(yīng)用時需要注意以下幾點:
?、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
?、谌魏尾坏扔?的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義.
?、廴魏尾坏扔?的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的;當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如,
?、苓\算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1.提公共因式法2.運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.
初二數(shù)學(xué)知識總結(jié)三
同類項的概念:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。幾個常數(shù)項也叫同類項。
判斷幾個單項式或項,是否是同類項的兩個標(biāo)準(zhǔn):
?、偎帜赶嗤?。②相同字母的次數(shù)也相同。
判斷同類項時與系數(shù)無關(guān),與字母排列的順序也無關(guān)。
合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。
合并同類項的法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
合并同類項步驟:
?、?準(zhǔn)確的找出同類項。
?、?逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。
?、?寫出合并后的結(jié)果。
合并同類項時注意:
(1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0。
(2)不要漏掉不能合并的項。
(3)只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。
(4)不是同類項千萬不能進(jìn)行合并。
猜你喜歡: