不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 教學方法 > 初二數(shù)學教學設計

初二數(shù)學教學設計

時間: 威敏1027 分享

初二數(shù)學教學設計

  初二年級,隨著數(shù)學科目的知識深化,內容拓展,呈現(xiàn)出文字到符號,具體到抽象,靜態(tài)到動態(tài)的變化,這使得學生在認知結構上發(fā)生了很大改變,常常會出現(xiàn)學生厭學的現(xiàn)象。如何抓好初二學生這一關鍵時期的數(shù)學學習,已經(jīng)引起了教師的足夠重視。下面學習啦小編為你整理了初二數(shù)學教學設計,希望對你有幫助。

  八年級數(shù)學教學設計:勾股定理

  一、教學目標

  1、讓學生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗證等過程,體會勾股定理的產(chǎn)生過程。

  2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學生為祖國的復興努力學習。

  3、培養(yǎng)學生數(shù)學發(fā)現(xiàn)、數(shù)學分析和數(shù)學推理證明的能力。

  二、教學重難點

  利用拼圖證明勾股定理

  三、學具準備

  四個全等的直角三角形、方格紙、固體膠

  四、教學過程

  (一) 趣味涂鴉,引入情景

  教師:很多同學都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

  (1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形。

  (2)再分別以這個三角形的三邊向三角形外作3個正方形。

  學生活動:先獨立完成,再在小組內互相交流畫法,最后班級展示。

  (二)小組探究,大膽猜想

  教師:觀察自己所涂鴉的圖形,回答下列問題:

  1、請求出三個正方形的面積,再說說這些面積之間具有怎樣的數(shù)量關系?

  面積邊長

  第Ⅰ個正方形

  第Ⅱ個正方形

  第Ⅲ個正方形

  2、圖中所畫的直角三角形的邊長分別是多少?請根據(jù)面積之間的關系寫出邊長之間存在的數(shù)量關系。

  3、與小組成員交流探究結果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關系?

  4、方法提煉:這種利用面積相等得出直角三角形三邊等量關系的方法叫做什么方法?

  學生活動:先獨立思考,再在小組內互相交流探究結果,并猜想直角三角形的三邊關系,最后班級展示。

  (三)趣味拼圖,驗證猜想

  教師:請利用四個全等的直角三角形進行拼圖。

  1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

  2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。

  學生活動:獨立拼圖,并思考如何利用圖形寫出相應的證明過程,再在組內交流算法,最后在班級展示。

  (四)課堂訓練 鞏固提升

  教師:請完成下列問題,并上臺進行展示。

  1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c

  已知a=6,b=8.求c.

  已知c=25,b=15.求a .

  已知c=9,a=3.求b.(結果保留根號)

  學生活動:先獨立完成問題,再組內交流解題心得,最后上臺展示,其他小組幫助解決問題。

  (五)課堂小結,梳理知識

  教師:說說自己這節(jié)課有哪些收獲?請從數(shù)學知識、數(shù)學方法、數(shù)學運用等方向進行總結。

  (六)課外涂鴉,延伸課堂

  (1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形;

  (2)再分別以這個三角形的三邊為直徑向三角形外作三個半圓,這三個半圓的面積之間有什么關系?看看又會有什么新的數(shù)學發(fā)現(xiàn)?

  17.1.1 《勾股定理》教學反思

  勾股定理的探索和證明蘊含著豐富的數(shù)學思想和數(shù)學方法,是培養(yǎng)學生良好思維品質的最佳載體。它以簡潔優(yōu)美的圖形結構,豐富深刻的內涵刻畫了自然界的和諧統(tǒng)一的關系,是數(shù)形結合的完美典范。著名數(shù)學家華羅庚就曾提出把“數(shù)形關系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言。為讓學生通過對這節(jié)課的學習得到更好的歷練,在教學時,特別注重從以下幾個方面入手:

  一、注重知識的自然生發(fā)。

  傳統(tǒng)的教學中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習,以題代講,搞題海戰(zhàn)術。但從學生的發(fā)展來著,如果壓縮數(shù)學知識的形成過程,不講究知識的自然生發(fā),學生獲取知識的過程是被動的,形成的體系也是孤立的,長此以往,學生必將錯過或失去思維發(fā)展和能力提高的機遇。在這節(jié)課上,不刻意追求所謂的進度,更沒有直接給出勾股定理,而是組織學生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學生在活動思考、交流、展示中,逐漸的形成了對知識的自我認識和自我感悟。這樣做不僅能幫助學生牢固掌握勾股定理,更重要的是使學生體會用自己所學的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強了學生主動性,同時他們的思維能力在知識自然形成的過程中不斷發(fā)展。

  二、注重數(shù)學課上的操作性學習

  操作性學習是自主探究性學習有效途徑之一,學生通過在實踐活動中的感受和體驗,有利于幫助學生理解和掌握抽象的數(shù)學知識。在這節(jié)課上,首先讓學生動手畫直角三角形,得出研究題材,然后又讓學生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調動了學生的手、口、腦等多種感官參與數(shù)學學習活動,既享受了操作的樂趣,又培養(yǎng)了學生的動手能力,加深了對知識的理解。

  三、注重問題設計的開放性

  課堂教學是教師組織、引導、參與和學生自主、合作、探究學習的雙邊活動。這其中教師的“引導”起著關鍵作用。這里的“引導”,很大程度上靠設疑提問來實現(xiàn)。在教學實踐中,問題設計要具有開放性。因為開放性問題更有利于培養(yǎng)學生的創(chuàng)造性思維、體現(xiàn)學生的主體意識和個性差異。本節(jié)課在設計涂鴉直角三角形時,安排學生在方格紙上任意涂鴉一個直角三角形;在設計拼圖驗證環(huán)節(jié)時,安排學生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學生的思維給出太多的限制條件,給出更多的想象和創(chuàng)造空間。雖然探究的時間會更長,但這更符合實際知識的產(chǎn)生環(huán)境,學生只有在這樣的環(huán)境下進行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會得到更有效的歷練。

  四、注重讓學生經(jīng)歷完整的數(shù)學知識的發(fā)現(xiàn)過程。

  新《數(shù)學課程標準》在關于課程目標的闡述中,首次大量使用了"經(jīng)歷(感受)、體驗(體會)、探索"等刻畫數(shù)學活動水平的過程性目標動詞,就是要求在數(shù)學學習的過程中,讓學生經(jīng)歷知識與技能形成與鞏固過程,經(jīng)歷數(shù)學思維的發(fā)展過程,經(jīng)歷應用數(shù)學能力解決問題的過程,從而形成積極的數(shù)學情感與態(tài)度。教學從學生感興趣的涂鴉開始,再經(jīng)歷觀察、分析、猜想、驗證的全過程,讓學生充分的經(jīng)歷了完整的數(shù)學知識的發(fā)現(xiàn)過程,使學生獲得對數(shù)學理解的同時,在知識技能、思維能力以及情感態(tài)度等多方面都得到了進步和發(fā)展。

  如果有機會再上這節(jié)課,我想我會投入更多的精力對學生可能會給出的答案進行預想,以便在課堂上給予學生更多的啟迪,讓他們走的更遠。一堂課,雖已結束,但對于生命課堂的領悟這條路,還有很長的路要走,我將繼續(xù)上下求索,做學生更好的支點。

  八年級數(shù)學教學設計:函數(shù)

  一、教學目標:

  1、知道一次函數(shù)與正比例函數(shù)的定義.

  2、理解掌握一次函數(shù)的圖象的特征和相關的性質;體會數(shù)形結合思想。

  3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系.

  二、教學重、難點:

  重點:初步構建比較系統(tǒng)的函數(shù)知識體系,能應用本章的基礎知識熟練地解決數(shù)學問題。

  難點:對直線的平移法則的理解,體會數(shù)形結合思想。

  三、教學過程:

  1、一次函數(shù)與正比例函數(shù)的定義 :

  一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)

  正比例函數(shù):對于 y=kx+b,當b=0, k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。

  2. 一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

  (1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

  (2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx平行的一條直線。

  基礎訓練一:

  (1)、指出下列函數(shù)中的正比例函數(shù)和一次函數(shù):①y = x +1;②y = - x/5;

  ③y = 3/x ;④y = 4x ;⑤y =x(3x+1)-3x ;⑥y=3(x-2);⑦y=x/5-1/2。

  (2)、下列給出的兩個變量中,成正比例函數(shù)關系的是:

  A、少年兒童的身高和年齡;B、長方形的面積一定,它的長與寬;

  C、圓的面積和它的半徑;D、勻速運動中速度固定時,路程與時間的關系。

  (3)、對于函數(shù)y =(m+1)x + 2- n,當m、n滿足什么條件時為正比例函數(shù)?當m、n滿足什么條件時為一次函數(shù)?

  3、正比例函數(shù)、一次函數(shù)的圖象和性質:

  k,b的符號與直線y=kx+b(k≠0) 的位置關系:

  k的符號決定了直線y=kx+b(k≠0) ;b的符號決定了直線y=kx+b與y軸的交點 。當k>0時,直線 ; 當k<0時,直線 。

  當b>0時,直線交于y軸的 ;當b<0時,直線交于y軸的 。

  為此直線y=kx+b(k≠0) 的位置有4種情況,分別是:

  當k>0, b>0時,直線經(jīng)過 ;當k>0, b<0時,直線經(jīng)過 ;

  當k<0,b>0時,直線經(jīng)過 ;當k<0,b<0時,直線經(jīng)過 。

  基礎訓練二:

  1. 寫出一個圖象經(jīng)過點(1,- 3)的函數(shù)解析式為 。

  2.直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而 。

  3.如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是 。

  4.已知正比例函數(shù) y =(3k-1)x,,若y隨x的增大而增大,則k

  是 。

  5、過點(0,2)且與直線y=3x平行的直線是 。

  6、若正比例函數(shù)y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當x1y2,則m的取值范圍是 。

  7、若函數(shù)y = ax+b的圖像過一、二、三象限,則ab 。0

  8、若y-2與x-2成正比例,當x=-2時,y=4,則x= 時,y = -4。

  9、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。

  10、將直線y = -2x-2向上平移2個單位得到直線 ;

  將它向左平移2個單位得到直線 。

  綜合訓練:已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。(1)求線段AB的長。(2)求直線AC的解析式。

  四、教學反思:

  從本節(jié)課的設計上看,我自認為知識全面,講解透徹,條理清晰,系統(tǒng)性強,講練結合,訓練到位,一節(jié)課下來后學生在基礎知識方面不會有什么漏洞。因為復習課的課堂容量比較大,需要展示給學生的知識點比較多,訓練題也比較多,課前的工作全由教師完成,教師認真?zhèn)湔n,我也感覺到這節(jié)課確實有一大部分學生注意力渙散,沒有全身心地投入到學習中去。以致于面對簡單的問題都卡,思維不連續(xù)。糾其原因,是我沒有把學生學習的積極性充分調動起來,學生沒有發(fā)揮出學習的主動性。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學生沒有保持住持久的緊張狀。

  八年級數(shù)學教學設計:二次根式

  教學設計思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結構的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術平方根的意義找出二次根式的三個性質。本節(jié)通過學生所熟悉的實際問題建立二次根式的概念,使學生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學生的應用意識。

  教學目標

  知識與技能

  1.知道什么是二次根式,并會用二次根式的意義解題;

  2.熟記二次根式的性質,并能靈活應用;

  過程與方法

  通過二次根式的概念和性質的學習,培養(yǎng)邏輯思維能力;

  情感態(tài)度價值觀

  1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應用的意識;

  2.通過二次根式性質的介紹滲透對稱性、規(guī)律性的數(shù)學美。

  教學重點和難點

  重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點:確定二次根式中字母的取值范圍。

  教學方法

  啟發(fā)式、講練結合

  教學媒體

  多媒體

  課時安排

  1課時

  教學過程設計

  一、引入

  1.什么叫平方根、算術平方根?

  2.用帶有根號的式子填空,看看寫出的式子有什么特點:

  (1)如圖21.1-1,要做一個兩條直角邊的長分別是7cm和4cm的三角尺,斜邊的長應為

  學習目標1、進一步體會通過建立方程解決實際問題的意義和方法2、進一步體會運用方程解決問題的關鍵是尋找等量關系,提高分析問題、解決問題的能力知識準備無蓋的長方體是如何制作的?增長率你是如何理解的?

  學習內容:

  一、情境創(chuàng)設一塊長方形鐵皮的長是寬的2倍,四角各截去一個正方形,制成高是5㎝,容積是500㎝3的無蓋長方體容器。求這塊鐵皮的長和寬。

  二、探索活動如何設未知數(shù)?如何找出表達實際問題的相等關系?這個問題中的相等關系是什么?

  一般情況下,應設要求的未知量為未知數(shù);應從題中尋找未知數(shù)所表示的未知量與已知量之間的等量關系;這個問題的等量關系是長寬高=容積與長=寬2。

  三、典型例題例1、某商店6月份的利潤是2500元,要使8月份的利潤達到3600元,這兩個月利潤的月平均增長的百分率是多少?

  分析:如果設這兩個月的利潤平均月增長的百分率是x,那么7月份的利潤是2500(1+x)元,8月份的利潤是2500(1+x)2元。
猜你感興趣:

1.初中八年級數(shù)學上冊教學設計

2.八年級數(shù)學上教學設計

3.八年級數(shù)學教案

4.八年級數(shù)學上冊教學設計

5.初二上冊數(shù)學函數(shù)的概念教學設計

6.初中數(shù)學課教學設計范文

2987317