2017大連中考數(shù)學模擬試題(2)
2017大連中考數(shù)學模擬考題答案
一、填空題(本大題共6個小題,每小題3分,滿分18分)
1.-4的相反數(shù)是 .
【考點】相反數(shù).
【分析】根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),0的相反數(shù)是0即可求解.
【解答】解:﹣4的相反數(shù)是4.
故答案為:4.
【點評】此題主要考查相反數(shù)的意義,較簡單.
2.函數(shù) 中自變量x 的取值范圍是 .
【考點】函數(shù)自變量的取值范圍.
【分析】根據(jù)被開方數(shù)大于等于0列不等式求解即可.
【解答】解:由題意得,x﹣1≥0,
解得x≥1.
故答案為:x≥1.
【點評】本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:
(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.
3.如圖,直線l1∥l2,CD⊥AB于點D,∠1=44°,則∠2的度數(shù)為 .
【考點】平行線的性質;垂線.
【分析】先在直角三角形CBD中可求得∠CBD的度數(shù),然后依據(jù)平行線的性質可求得∠2的度數(shù).
【解答】解:∵CD⊥AB于點D,
∴∠CDB=90°.
∴∠CBD=90°-∠1=46°.
∵l1∥l2,
∴∠2=∠CBD=46°.
故答案為:46°.
【點評】本題主要考查了平行線的性質,解題時注意:兩直線平行,內(nèi)錯角相等.
4.已知一個等腰三角形的兩邊長分別為3和6,則該等腰三角形的周長是 .
【考點】三角形三邊關系;等腰三角形的性質.
【專題】計算題.
【分析】由三角形的三邊關系可知,其兩邊之和大于第三邊,兩邊之差小于第三邊.
【解答】解:由三角形的三邊關系可知,由于等腰三角形兩邊長分別是3和6,
所以其另一邊只能是6,故其周長為6+6+3=15.
故答案為15.
【點評】本題主要考查了三角形的三邊關系問題,能夠利用三角形的三邊關系求解一些簡單的計算、證明問題.
5.若x1,x2是一元二次方程x2﹣2x+1=0的兩個根,則x 1﹣x 1 x 2+ x 2的值為 .
【考點】根與系數(shù)的關系.
【分析】根據(jù)一元二次方程根與系數(shù)之間的關系得出兩根之和,兩根之積,再代值計算即可.
【解答】解:∵x1,x2是一元二次方程x2﹣2x+1=0的兩個根,
∴x1+x2=2,x1x2=1,
∴x 1﹣x 1 x 2+ x 2=(x1+x2)﹣x1x2=2﹣1=1;
故答案為:1.
【點評】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,則x1+x2= ,x1x2= .
6.如圖,在平面直角坐標系中,直線l:y =x+2交x軸于點A,交y軸于點A1,點A2,A3,…在直線l上,點B1,B2,B3,…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn頂點Bn的橫坐標為 .
【考點】規(guī)律型:點的坐標.
【分析】先求出B1、B2、B3…的坐標,探究規(guī)律后,即可根據(jù)規(guī)律解決問題.
【解答】解:由題意得OA=OA1=2,
∴OB1=OA1=2,
B1B2=B1A2=4,B2A3=B2B3=8,
∴B1(2,0),B2(6,0),B3(14,0)…,
2=22﹣2,6=23﹣2,14=24﹣2,…
∴Bn的橫坐標為2n+1﹣2.
故答案為2n+1﹣2.
二、選擇題(本大題共8個小題,每小題只有一個正確選項,每小題4分,滿分32分)
7.下列運算正確的是( )
A. B. C. D.
【考點】冪的乘方與積的乘方;算術平方根;合并同類項;完全平方公式.
【分析】根據(jù)冪的乘方和積的乘方,即可解答.
【解答】
解:A、 ,故本選項錯誤;
B、 ,故本選項錯誤;
C、 ,故本選項錯誤;
D、 ,正確;
故選:D.
【點評】本題考查了冪的乘方和積的乘方,解決本題的關鍵是熟記冪的乘方和積的乘方.
8.已知一個正多邊形的內(nèi)角是140°,則這個正多邊形的邊數(shù)是( )
A.6 B.7 C.8 D.9
【考點】多邊形內(nèi)角與外角.
【專題】計算題;推理填空題.
【分析】首先根據(jù)一個正多邊形的內(nèi)角是140°,求出每個外角的度數(shù)是多少;然后根據(jù)外角和定理,求出這個正多邊形的邊數(shù)是多少即可.
【解答】解:360°÷(180°﹣140°)=360°÷40°=9.
答:這個正多邊形的邊數(shù)是9.
故選:D.
【點評】此題主要考查了多邊形的內(nèi)角與外角,要熟練掌握,解答此題的關鍵是要明確多邊形的外角和定理.
9.如圖是由4個大小相同的正方體組合而成的幾何體,其左視圖是( )
A. B. C. D.
【考點】簡單組合體的三視圖.
【分析】從左面看:共有1列,有2個小正方形;據(jù)此可畫出圖形.
【解答】解:如圖所示幾何體的左視圖是.
故選:A.
【點評】考查簡單組合體的三視圖;用到的知識點為:主視圖,左視圖,俯視圖分別是從物體的正面,左面,上面看得到的圖形.
10.云南高鐵自開通以來,發(fā)展速度不斷加快,現(xiàn)已成為云南市民主要出行方式之一.今年五一期間安全運輸乘客約5460000人次.用科學記數(shù)法表示5460000為( )
A.5.46×107 B.5.46×106 C.5.5×106 D.546×104
【考點】科學記數(shù)法—表示較大的數(shù).
【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).
【解答】解:用科學記數(shù)法表示5460000為5.46×106.
故選B.
【點評】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.
11.如圖,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )
A.π-4 B. π-1 C.π-2 D. π-2
【考點】圓周角定理;扇形面積的計算.
【分析】先證得△OBC是等腰直角三角形,然后根據(jù)S陰影=S扇形OBC﹣S△OBC即可求得.
【解答】解:∵∠BAC=45°,
∴∠BOC=90°, ∴△OBC是等腰直角三角形,
∵OB=2, ∴S陰影=S扇形OBC﹣S△OBC= π×22﹣ ×2×2=π﹣2.
故選C.
【點評】本題考查的是圓周角定理及扇形的面積公式,熟記扇形的面積公式是解答此題的關鍵.
12.某中學籃球隊12名隊員的年齡如下表所示:
年齡(歲) 13 14 15 16
人數(shù) 2 5 4 1
則這12名隊員的年齡的眾數(shù)和中位數(shù)分別是( )
A.14,14 B.14,14.5 C.14,15 D.15,14
【考點】眾數(shù);中位數(shù).
【分析】眾數(shù)就是出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)就是大小處于中間位置的數(shù),根據(jù)定義即可求解.
【解答】解:在這12名隊員的年齡數(shù)據(jù)里,14歲出現(xiàn)了5次,次數(shù)最多,因而眾數(shù)是14;
12名隊員的年齡數(shù)據(jù)里,第6和第7個數(shù)據(jù)的平均數(shù)是14,因而中位數(shù)是14.
故選:A.
【點評】本題考查了眾數(shù)和中位數(shù)的概念:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).
13.若點A(﹣4,3)、B(m,2)在同一個反比例函數(shù)的圖象上,則m的值為( )
A.6 B.﹣6 C.12 D.﹣12
【考點】反比例函數(shù)圖象上點的坐標特征.
【分析】根據(jù)反比例函數(shù)y= 中,k=xy為定值即可得出結論.
【解答】解:∵點A(﹣4,3)、B(m,2)在同一個反比例函數(shù)的圖象上,
∴(﹣4)×3=2m,解得m=﹣6.
故選B.
【點評】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.
14.如圖,一直線與兩坐標軸的正半軸分別交于A,B兩點,P是線段
AB上任意一點(不包括端點),過P分別作兩坐標軸的垂線與兩坐標軸
圍成的矩形的周長為10,則該直線的函數(shù)表達式是( )
A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10
【考點】待定系數(shù)法求一次函數(shù)解析式;矩形的性質.
【分析】設P點坐標為(x,y),由坐標的意義可知PC=x,PD=y,根據(jù)題意可得到x、y之間的關系式,可得出答案.
【解答】解:設P點坐標為(x,y),如圖,過P點分別作PD⊥x軸,PC⊥y軸,垂足分別為D、C,
∵P點在第一象限,
∴PD=y,PC=x,
∵矩形PDOC的周長為10,
∴2(x+y)=10,
∴x+y=5,即y=﹣x+5,
故選C.
【點評】本題主要考查矩形的性質及點的坐標的意義,根據(jù)坐標的意義得出x、y之間的關系是解題的關鍵.
三、解答題(本大題共9個小題,滿分70分)
15.(7分)計算:先化簡,再求值: ,其中x=1.
【考點】分式的化簡求值.菁優(yōu)網(wǎng)版權所有
【分析】先算括號里面的,再算除法,或者利用乘法分配律進行化簡,最后把x的值代入進行計算即可.
【解答】
當 時,原式= .
【點評】本題考查的是分式的化簡求值,此類題型的特點是:利用方程解的定義找到相等關系,再把所求的代數(shù)式化簡后整理出所找到的相等關系的形式,再把此相等關系整體代入所求代數(shù)式,即可求出代數(shù)式的值.
16.(7分)如圖,∠ADB=∠AEC,AD=AE.求證:BE=CD.
【考點】全等三角形的判定與性質.
【分析】根據(jù)全等三角形的判定和性質即可得到結論.
【解答】
證明:在△ADB和△AEC中
∵ ∠ADB=∠AEC,AD=AE,∠DAB=∠EAC
∴ △ADB≌△AEC
∴ AB=AC
又∵ AD=AE
∴ BE=CD
【點評】本題考查了全等三角形的判定和性質,熟練掌握全等三角形的判定和性質是解題的關鍵.
17.(7分)如圖,長4m的樓梯AB的傾斜角∠ABD為45°,為了改善樓梯的安全性能,準備重新建造樓梯,使其傾斜角∠ACD為30°,求調(diào)整后的樓梯AC的長.(精確到0.1m, , )
【考點】解直角三角形的應用;坡度坡角問題.
【分析】先在Rt△ABD中利用正弦的定義計算出AD,然后在Rt△ACD中利用正弦的定義計算AC即可.
【解答】
解:在Rt△ADB中,∵sin∠ABD= ,
∴AD=4sin45°= (m),
在Rt△ACD中,∵sin∠ACD= ,
∴AC= (m).
答:調(diào)整后的樓梯AC的長約為5.6 m
【點評】本題考查了解直角三角形的實際應用中的坡度坡角問題,難度不大,注意細心運算即可.
18.(8分)荔枝是云南省的特色水果,小明的媽媽先購買了2千克酸味和3千克甜味,共花費90元;后又購買了1千克酸味和2千克甜味,共花費55元.(每次兩種荔枝的售價都不變)
(1)求酸味和甜味的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求甜味的數(shù)量不少于酸味數(shù)量的兩倍,請設計一種購買方案,使 所需總費用最低.
【考點】一次函數(shù)的應用;二元一次方程組的應用.
【分析】(1)設酸味售價為每千克x元,甜味售價為每千克y元,根據(jù)題意列出方程組即可解決問題.
(2)設購買酸味n千克,總費用為m元,則購買甜味12﹣n千克,路程不等式求出n的范圍,再構建一次函數(shù),利用一次函數(shù)的性質解決最值問題.
【解答】
解:(1)設酸味售價為每千克x元,甜味售價為每千克y元,
根據(jù)題意得: 解得:
答:酸味售價為每千克15元,甜味售價為每千克20元.
(2)設購買酸味n千克,總費用為m元,則購買甜味12-n千克,
∴12-n≥2n ∴n≤4
m=15n+20(12-n)=-5n +240
∵k=-5<0 ∴m隨n的增大而減小
∴當n=4時,m =220
答:購買酸味4千克,甜味8千克時,總費用最少.
【點評】本題考查一次函數(shù)的應用、二元一次方程組等知識,解題的關鍵是學會設未知數(shù),列出解方程組解決問題,學會構建一次函數(shù),利用一次函數(shù)的性質解決最值問題,屬于中考??碱}型.
19.(8分)如圖,轉盤A的三個扇形面積相等,分別標有數(shù)字1,2,3,轉盤B的四個扇形面積相等,分別標有數(shù)字1,2,3,4.轉動A、B轉盤各一次,當轉盤停止轉動時,將指針所落扇形中的兩個數(shù)字相加(當指針落在四個扇形的交線上時,重新轉動轉盤).
(1)用樹狀圖或列表法列出所有可能出現(xiàn)的結果;
(2)若規(guī)定兩個數(shù)字的和為5時甲贏,兩個數(shù)字的
和為4時乙贏,請問這個游戲對甲、乙兩人是否公平?
【考點】游戲公平性;列表法與樹狀圖法.
【分析】(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;
(2)分別求出定兩個數(shù)字的和為5時和兩個數(shù)字的和為4時的概率,即可知道游戲是否公平不公平.
【解答】(1)畫樹狀圖得:(或者列表得)
和 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
則共有12種等可能的結果;
(2)∵兩個數(shù)字的和為5或者和為4都是有3種情況,
∴兩個數(shù)字的和為5或者和為4的概率都是: .
∴這個游戲對甲、乙兩人是公平的.
【點評】本題考查游戲公平性、列表法和樹狀圖法,解答此類問題的關鍵是明確題意,寫出所有的可能性.
20.(7分)如圖,菱形ABCD的對角線AC,BD相交于點O,且DE∥AC,AE∥BD.
求證:四邊形AODE是矩形.
【考點】矩形的判定;菱形的性質.
【專題】證明題.
【分析】根據(jù)菱形的性質得出AC⊥BD,再根據(jù)平行四邊形的判定定理得四邊形AODE為平行四邊形,由矩形的判定定理得出四邊形AODE是矩形.
【解答】
證明:∵四邊形ABCD為菱形,
∴AC⊥BD,
∴∠AOD=90°,
∵DE∥AC,AE∥BD,
∴四邊形AODE為平行四邊形,
∴四邊形AODE是矩形.
【點評】本題考查了矩形的判定以及菱形的性質,還考查了平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.
21.(9分)某學校為了增強學生體質,決定開放以下球類活動項目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了兩幅不完整的統(tǒng)計圖(如圖①,圖②),請回答下列問題:
(1)這次被調(diào)查的學生共有多少人?
(2)請你將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1900人,
請你估計該校喜歡D項目的人數(shù).
【考點】條形統(tǒng)計圖;用樣本估計總體;
扇形統(tǒng)計圖.菁優(yōu)網(wǎng)版權所有
【分析】(1)用喜歡籃球的人數(shù)除以喜歡籃球的人數(shù)所占的百分比,即可求出這些被調(diào)查的學生數(shù);
(2)用總人數(shù)減去喜歡籃球、乒乓球和足球的人數(shù),即可求出喜歡排球的人數(shù),從而補全統(tǒng)計圖;
(3)用總人數(shù)乘以喜歡足球的人數(shù)所占的百分比即可.
【解答】解:(1)由扇形統(tǒng)計圖可知:扇形A的圓心角是36°,
所以喜歡A項目的人數(shù)占被調(diào)查人數(shù)的百分比= ×100%=10%.
由條形圖可知:喜歡A類項目的人數(shù)有20人,
所以被調(diào)查的學生共有20÷10%=200(人).
(2)喜歡C項目的人數(shù)=200-(20+80+40)=60(人),
因此在條形圖中補畫高度為60的長方條,如圖所示.
(3)1900×(40÷200)=380(人).
答:該校喜歡D項目的人數(shù)約為380人.
【點評】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.
22.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于F.
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為2,BC= ,求DF的長.
【考點】切線的判定;相似三角形的判定與性質.
【分析】(1)欲證明DF是⊙O的切線只要證明DF⊥OD,
只要證明OD∥AC即可.
(2)連接AD,首先利用勾股定理求出AD,由△ADC∽△DFC可得 ,列出方程即可解決問題.
【解答】(1)證明:連接OD,
∵OB=OD ∴∠ABC=∠ODB
∴AB=AC ∴∠ABC=∠ACB
∴∠ODB=∠ACB ∴OD∥AC
∵DF⊥AC ∴DF⊥OD
∴DF是⊙O的切線
(2)連接AD,∵AB是⊙O的直徑
∴AD⊥BC 又∵AB=AC
∴BD=DC=
∴AD=
∵DF⊥AC ∴△ADC∽△DFC
∴ ∴DF=
【點評】本題考查切線的判定、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,屬于中考常考題型.
23.(9分)如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達式;
(2)直接寫出點C的坐標,并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于第四象限,
當△ABP的面積為6時,求出點P的坐標.
【考點】拋物線與x軸的交點;二次函數(shù)圖象與幾何變換.
【分析】(1)把A點和B點坐標分別代入y=ax2+bx中得到關于a、b的方程組,然后解方程組即可得到拋物線解析式;
(2)計算函數(shù)值為3所對應的自變量的值即可得到C點,然后根據(jù)三角形面積公式計算△ABC的面積;
(3)作PD⊥BH,如圖,設P(m,﹣m2+4m),則利用S△ABH+S梯形APDH=S△PBD+S△ABP可得到關于m的方程,然后解方程求出m即可得到P點坐標.
【解答】
解:(1)把點A(4,0),B(1,3)代入拋物線y=ax2+bx中,得
∴拋物線表達式為:y=﹣x2+4x;
(2)點C的坐標為(3,3),
又∵點B的坐標為(1,3), ∴BC=2,
∴S△ABC= ×2×3=3;
(3)過P點作PD⊥BH交BH于點D,
設點P(m,﹣m2+4m),
根據(jù)題意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,
∴S△ABP=S△ABH+S四邊形HAPD﹣S△BPD,
6= ×3×3+ (3+m﹣1)(m2﹣4m)﹣ (m﹣1)(3+m2﹣4m),
∴3m2﹣15m=0,
m1=0(舍去),m2=5,
∴點P坐標為(5,﹣5).
【點評】本題考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2﹣4ac決定拋物線與x軸的交點個數(shù):△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.
猜你喜歡: