中國精算師資格考試內(nèi)容是什么
中國精算師資格考試內(nèi)容是什么
中國精算師資格考試內(nèi)容是什么
第I部分 中國精算師資格考試 準精算師部分
A1數(shù)學
考試時間:3小時
考試形式:選擇題
考試要求:
本科目是關(guān)于風險管理和精算中隨機數(shù)學的基礎(chǔ)課程。通過本科目的學習,考生應(yīng)該掌握基本的概率統(tǒng)計知識,具備一定的數(shù)據(jù)分析能力,初步了解各種隨機過程的性質(zhì)。
考生應(yīng)掌握概率論、統(tǒng)計模型和應(yīng)用隨機過程的基本概念和主要內(nèi)容。
考試內(nèi)容:
A、概率論(分數(shù)比例約為35%)
1. 概率的計算、條件概率、全概公式和貝葉斯公式 (第一章)
2. 聯(lián)合分布律、邊緣分布函數(shù)及邊緣概率密度的計算 (第二章)
3. 隨機變量的數(shù)字特征 (§3.1、§3.2、§3.4)
4. 條件期望和條件方差 (§3.3)
5. 大數(shù)定律及其應(yīng)用 (第四章)
B、數(shù)理統(tǒng)計(分數(shù)比例約為25%)
1. 統(tǒng)計量及其分布 (第五章)
2. 參數(shù)估計 (第六章)
3. 假設(shè)檢驗 (第七章)
4. 方差分析 (§8.1)
C、應(yīng)用統(tǒng)計(分數(shù)比例約為10%)
1. 一維線性回歸分析 (§8.2)
2. 時間序列分析(平穩(wěn)時間序列及ARIMA模型) (第九章)
D、隨機過程(分數(shù)比例約為20%)
1. 隨機過程一般定義和基本數(shù)字特征 (第十章)
2. 幾個常用過程的定義和性質(zhì)(泊松過程、更新過程、馬氏過程、鞅過程和布朗運動) (第十一章)
E、隨機微積分(分數(shù)比例約為10%)
1. 關(guān)于布朗運動的積分 (§11.5、第十二章)
2. 伊藤公式 (§12.2)
考試指定教材:
中國精算師資格考試用書:《數(shù)學》 肖宇谷主編,李勇權(quán)主審,中國財政經(jīng)濟出版社2010版,所有章節(jié)。
A2 金融數(shù)學
考試時間:3小時
考試形式: 選擇題
考試要求:
本科目要求考生具有較好的數(shù)學知識背景。通過學習本科目, 考生應(yīng)該熟練掌握利息理論、利率期限結(jié)構(gòu)與隨機利率模型、金融衍生工具定價理論、投資組合理論的主要內(nèi)容,在了解基本概念、基本理論的基礎(chǔ)上,掌握上述幾部分內(nèi)容涉及的方法和技巧。
考試內(nèi)容:
A、利息理論 (分數(shù)比例約為30%)
1. 利息的基本概念(分數(shù)比例約為4%)
2. 年金(分數(shù)比例約為6%)
3. 收益率(分數(shù)比例約為6%)
4. 債務(wù)償還(分數(shù)比例約為4%)
5. 債券及其定價理論(分數(shù)比例約為10%)
B、利率期限結(jié)構(gòu)與隨機利率模型(分數(shù)比例約為 16%)
1. 利率期限結(jié)構(gòu)理論(分數(shù)比例約為10%)
2. 隨機利率模型(分數(shù)比例約為6%)
C、金融衍生工具定價理論(分數(shù)比例約為26%)
1. 金融衍生工具介紹(分數(shù)比例約為10%)
2. 金融衍生工具定價理論(分數(shù)比例約為16%)
D、投資理論(分數(shù)比例約為28%)
1. 投資組合理論(分數(shù)比例約為12%)
2. 資本資產(chǎn)定價(CAPM)與套利定價(APT)理論(分數(shù)比例約為16%)
考試指定教材:
中國精算師資格考試用書《金融數(shù)學》:徐景峰主編,楊靜平主審,中國財政經(jīng)濟出版社2010年版,所有章節(jié)。
A3精算模型
考試時間:3小時
考試形式:選擇題
考試要求:
本科目是關(guān)于精算建模方面的課程。通過本科目的學習,考生應(yīng)該掌握以概率統(tǒng)計為研究工具對保險經(jīng)營中的損失風險和經(jīng)營風險進行定量分析,并建立精算模型的方法,進而要求考生掌握模型參數(shù)估計以及如何確定該使用哪個模型、如何根據(jù)經(jīng)驗數(shù)據(jù)對先驗?zāi)P瓦M行后驗調(diào)整的方法。
考試內(nèi)容:
A、基本風險模型(分數(shù)比例約為34.3%)
1. 生存分析的基本函數(shù)及生存模型:掌握對一元生存模型和多元生存模型進行分析的基本函數(shù)的概念及其相互關(guān)系;常用參數(shù)生存模型的假設(shè)及結(jié)果。
2. 生命表:掌握生命表函數(shù)與生存分析函數(shù)之間的關(guān)系,特別是不同假設(shè)下整數(shù)年齡間生命表函數(shù)的推導(dǎo);選擇--終極生命表的有關(guān)計算。
3. 理賠額和理賠次數(shù)的分布:常見的損失額分布以及不同賠償方式下理賠額的分布;單個保單理賠次數(shù)的分布;不同結(jié)構(gòu)函數(shù)下保單組合理賠次數(shù)的分布以及相關(guān)性保單組合理賠次數(shù)的分布。
4. 短期個體風險模型:單個保單的理賠分布;獨立和分布的計算;矩母函數(shù);中心極限定理的應(yīng)用。
5. 短期聚合風險模型:理賠總量模型;復(fù)合泊松分布及其性質(zhì);聚合理賠量的近似模型。
6. 破產(chǎn)模型:連續(xù)時間與離散時間的盈余過程與破產(chǎn)概率;賠過程;破產(chǎn)概率;調(diào)節(jié)系數(shù);最優(yōu)再保險與調(diào)節(jié)系數(shù);布朗運動風險過程。
B、模型的估計和選擇(分數(shù)比例約為28.6%)
1. 經(jīng)驗?zāi)P停?1)掌握非完整數(shù)據(jù)生存函數(shù)的Kaplan-Meier乘積極限估計、危險率函數(shù)的Nelson-Aalen估計;(2)掌握生存函數(shù)區(qū)間估計、Greenwood方差近似及相應(yīng)的區(qū)間估計;(4)掌握三種常見核函數(shù)的密度估計方法,熟悉大樣本的Kaplan-Meier近似計算方法,熟悉多元終止概率的計算。
2. 參數(shù)模型的估計:(1)掌握完整樣本數(shù)據(jù)下個體數(shù)據(jù)和分組數(shù)據(jù)的矩估計、分位數(shù)估計和極大似然估計方法;(2)掌握非完整樣本數(shù)據(jù)(存在刪失和截斷的數(shù)據(jù))的矩估計和極大似然估計方法;(3)熟悉二元變量模型、和模型、Cox模型、廣義線性模型等多變量參數(shù)模型的參數(shù)估計。
3. 參數(shù)模型的檢驗和選擇:(1)學會運用p-p圖、Q-Q圖和平均剩余生命圖等圖形來直觀選擇合適分布的方法;(3)掌握利用x2擬合優(yōu)度檢驗、K-S檢驗、Anderson-Darling檢驗和似然比檢驗進行分布擬合效果檢驗或分布選擇的方法。
C、模型的調(diào)整和隨機模擬(分數(shù)比例約為37.1%)
1. 修勻理論:掌握表格數(shù)據(jù)修勻、參數(shù)修勻的各種方法。對于表格數(shù)據(jù)修勻,要掌握移動加權(quán)平均修勻法、Whittaker修勻、Bayes修勻的概念及相關(guān)計算,掌握二維Whittaker修勻的方法及相關(guān)計算;對于參數(shù)修勻,要掌握對于三種含參數(shù)的人口模型(Gompertz、 Makeham、 Weibull)估計的方法,掌握分段參數(shù)修勻、光滑連接修勻的方法及相關(guān)計算。
2. 信度理論:熟悉各種信度模型,如有限波動信度、貝葉斯信度、Bühlmann模型、Bühlmann-Straub模型中信度估計的計算方法;熟悉使用經(jīng)驗貝葉斯方法估計非參數(shù)、半?yún)?shù)和參數(shù)模式下的結(jié)構(gòu)參數(shù)并計算信度估計值。
3. 隨機模擬:隨機數(shù)的產(chǎn)生方法;離散隨機變量與連續(xù)隨機變量的模擬;熟悉使用Bootstrap方法計算均方誤差;熟悉MCMC模擬的簡單應(yīng)用。
考試指定教材:
中國精算師資格考試用書《精算模型》:肖爭艷主編,孫佳美主審,中國財政經(jīng)濟出版社,2010年版,第2-13章。
附:《精算模型》教材中錯誤更正
1. 第170頁【例8-21】第一行:
…計算累計死亡力函數(shù)的Nelso-Aalen估計…
應(yīng)改為:
…計算累計危險率函數(shù)的Nelso-Aalen估計…
7.教材第270頁【例11-6】中:
用最小二乘法樣條修勻法來擬合觀察值……
應(yīng)改為:
用最小二乘法線性樣條修勻法來擬合觀察值……
8.教材第285頁倒數(shù)第14行:
上例給出了損失強度部分信度估計的計算方法,我們在通過一個例子
應(yīng)改為:
上例給出了損失強度部分信度估計的計算方法,我們再通過一個例子
9.教材第317頁第18題最后一句話:
確定配額組內(nèi)方差的期望。
應(yīng)改為
確定賠額組內(nèi)方差的期望。