不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > >

高考數(shù)學(xué)??嫉闹R(shí)點(diǎn)歸納

時(shí)間: 業(yè)鴻0 分享

為了考到一個(gè)好的大學(xué),同學(xué)們一定要現(xiàn)下的階段認(rèn)真學(xué)習(xí)和復(fù)習(xí),高考數(shù)學(xué)需要復(fù)習(xí)的常考知識(shí)點(diǎn)有什么?下面是小編為大家整理的關(guān)于高考數(shù)學(xué)常考的知識(shí)點(diǎn)歸納,歡迎大家來(lái)閱讀。

高考數(shù)學(xué)??嫉闹R(shí)點(diǎn)歸納

高考的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

⒉寫(xiě)出點(diǎn)M的集合;

⒊列出方程=0;

⒋化簡(jiǎn)方程為最簡(jiǎn)形式;

⒌檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高考數(shù)學(xué)必備知識(shí)點(diǎn)

一、直線與方程高考考試內(nèi)容及考試要求:

考試內(nèi)容:

1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;

2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;

考試要求:

1.理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;

2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;

二、直線與方程

課標(biāo)要求:

1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫(huà)直線斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式;

3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;

4.會(huì)用代數(shù)的方法解決直線的有關(guān)問(wèn)題,包括求兩直線的交點(diǎn),判斷兩條直線的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。

要點(diǎn)精講:

1.直線的傾斜角:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α= 0°。

傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時(shí), α= 90°。

2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是k = tanα  (1)當(dāng)直線l與x軸平行或重合時(shí),α=0°,k = tan0°=0;

(2)當(dāng)直線l與x軸垂直時(shí),α= 90°,k 不存在。

由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

數(shù)學(xué)高考必考知識(shí)點(diǎn)總結(jié)

全國(guó)卷高考數(shù)學(xué)知識(shí)點(diǎn)一

必修一:1、集合與函數(shù)的概念 (這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)   必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線面角和面面角

這部分知識(shí)是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22---27分

2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題

3、圓方程:

必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來(lái)考查

2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽(tīng)課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

全國(guó)卷高考數(shù)學(xué)知識(shí)點(diǎn)二

數(shù)學(xué)知識(shí)點(diǎn)歸納整理:函數(shù)方程

1.函數(shù)思想:把某變化過(guò)程中的一些相互制約的變量用函數(shù)關(guān)系表達(dá)出來(lái),并研究這些量間的相互制約關(guān)系,最后解決問(wèn)題,這就是函數(shù)思想;

2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個(gè)步驟:(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問(wèn)題轉(zhuǎn)化為相應(yīng)的函數(shù)問(wèn)題;(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識(shí)解決問(wèn)題;(3)方程思想:在某變化過(guò)程中,往往需要根據(jù)一些要求,確定某些變量的值,這時(shí)常常列出這些變量的方程或(方程組),通過(guò)解方程(或方程組)求出它們,這就是方程思想;

3.函數(shù)與方程是兩個(gè)有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問(wèn)題需要用函數(shù)的知識(shí)和方法解決,很多函數(shù)的問(wèn)題也需要用方程的方

的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。

全國(guó)卷高考數(shù)學(xué)知識(shí)點(diǎn)三

數(shù)學(xué)基本不等式知識(shí)點(diǎn)

數(shù)學(xué)知識(shí)點(diǎn)1.不等式性質(zhì)比較大小方法:

(1)作差比較法(2)作商比較法。

不等式的基本性質(zhì)

①對(duì)稱性:a > bb > a。

②傳遞性: a > b, b > ca > c。

③可加性: a > b a + c > b + c。

④可積性: a > b, c > 0ac > bc。

⑤加法法則: a > b, c > d a + c > b + d。

⑥乘法法則:a > b > 0, c > d > 0 ac > bd。

⑦乘方法則:a > b > 0, an > bn (n∈N)。

⑧開(kāi)方法則:a > b > 0。

高考??嫉臄?shù)學(xué)知識(shí)點(diǎn)

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

斜二測(cè)畫(huà)法特點(diǎn):

①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

高考數(shù)學(xué)考試的知識(shí)

立體幾何初步

(1)棱柱:

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

1797143