不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 教學方法 >

解決數(shù)學問題的方法有哪些

時間: 文瓊20 分享

  數(shù)學問題蘊含著很多日常的生活中,所以,家長應該根據(jù)日常生活遇到的問題,對孩子經常性的訓練,比如間距問題,樓層問題,開關燈問題,等等,都是可以通過實踐來學習的。下面小編給大家整理了關于解決數(shù)學問題的方法,希望對你有幫助!

  1解決數(shù)學問題的方法

  一個看似復雜的數(shù)學問題實際上有好多個簡單問題組合而成,要解決它們的關鍵是能夠有豐厚的基礎知識儲備,有靈活多變的數(shù)學思想方法。

  首先,要審清題干,明確你已知什么,包括題干中給出了什么具體信息,隱含信息。這樣你才知道你有什么,這是你要得到什么的基礎前提。帶著這樣的思路去分析問題,就是一種數(shù)學上由已知推未知的思路。數(shù)學其實本質上就是在做這樣的事情,不管是推理還是計算。

  其次,要將題目進行推理轉化,類似于數(shù)學上的分析法。如我要吃飯,那我得先做飯或者買飯,做飯的話需要什么材料需要什么步驟,買飯的話需要多少錢買什么東西。然后一直這樣追問下去,直到將問題的源頭和最終要解決的問題聯(lián)系起來,那么就完成解決問題的思維過程,也就是轉化完畢。

  將思維的過程從前到后整理成邏輯性的步驟??梢哉f第二步就是逆向思維的過程,這就是正向推導的邏輯推理。步驟要運用到最基本的推理,這些是你完成步驟最基本的保證。

  2思想

  代入法,這列方法往往是給定了一些條件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.這些給定了一些特殊的條件,然后讓你求一個ab組合在一起的一些式子,可能會很復雜。但是如果是選擇題,你可以取a=0.5,b=1.5試一試。還有就是可以把選項里的答案帶到題目中的式子來計算。倒推法!!比如下一題!!!

  坐標法,如果做的一些圖形題完全找不到思路,第一可以用比例法,第二可以用坐標法,不用管什么三角函數(shù),直接找到兩點坐標,直接帶入高中函數(shù)求角度(cos公式)求垂直,求長度,相切相離公式。直接直搗黃龍,不用一點點找角度做什么麻煩的事

  區(qū)間法,這類方法也成為排除法,靠著大概計算出的數(shù)據(jù)或者猜一些數(shù)據(jù)。比如一個題目里給了幾個角度,30°,90°。很明顯,答案里就肯定是90±30度,120加減30度?;蛘咭恍┡c30,60,90度有關的答案

  3思想

  日常生活中設置問題。

  數(shù)學問題蘊含著很多日常的生活中,所以,家長應該根據(jù)日常生活遇到的問題,對孩子經常性的訓練,比如間距問題,樓層問題,開關燈問題,等等,都是可以通過實踐來學習的。

  多嘗試做一些應用題。

  對于一些日常用到的數(shù)學問題,經常會有一些典型的應用題題型,這些題型是專門為了解決一些具體問題而設定的,所以,孩子應該多做一些這樣的題,可以對解決問題有個初步了解。

  培養(yǎng)邏輯思維能力。

  孩子的數(shù)學能力主要是通過邏輯思維來提高的,所以,家長一定要多培養(yǎng)孩子的邏輯思維能力,讓孩子的思維更加開闊,從而在解決實際問題的時候,就不會感到困難。

  4思想

  課內重視聽講,課后及時復習。

  新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。

  首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

  5數(shù)學思想方法歸納方法介紹

  思想是客觀存在反映在人的意識中經過思維活動而產生的結果。它是從大量的思維活動中獲得的產物,經過反復提煉和實踐,如果一再被證明為正確,就可以反復被應用到新的思維活動中,并產生出新的結果。本文所指的思想,都是那些顛撲不破、屢試不爽的思維產物。因此,對于學習者來說,思想就成為他們進行思維活動的細胞和基礎,以下是樸新小編給大家?guī)砹藬?shù)學思想方法歸納方法介紹。

  6數(shù)學思想方法歸納方法

  函數(shù)與方程思想:1)函數(shù)思想是對函數(shù)內容在更高層次上的抽象,概括與提煉,在研究方程、不等式、數(shù)列、解析幾何等其他內容時,起著重要作用2)方程思想是解決各類計算問題的基本思想,是運算能力的基礎高考把函數(shù)與方程思想作為七種重要思想方法重點來考查

  數(shù)形結合思想:1)數(shù)學研究的對象是數(shù)量關系和空間形式,即數(shù)與形兩個方面2)在一維空間,實數(shù)與數(shù)軸上的點建立一一對應關系. 在二維空間,實數(shù)對與坐標平面上的點建立一一對應關系.數(shù)形結合中,選擇、填空側重突出考查數(shù)到形的轉化,在解答題中,考慮推理論證嚴密性,突出形到數(shù)的轉化

  分類與整合思想:1)分類是自然科學乃至社會科學研究中的基本邏輯方法.2)從具體出發(fā),選取適當?shù)姆诸悩藴?3)劃分只是手段,分類研究才是目的.4) 有分有合,先分后合,是分類整合思想的本質屬性.5) 含字母參數(shù)數(shù)學問題進行分類與整合的研究,重點考查學生思維嚴謹性與周密性

  化歸與轉化思想:1)將復雜問題化歸為簡單問題,將較難問題化為較易問題,將未解決問題化歸為已解決問題.2)靈活性、多樣性,無統(tǒng)一模式,利用動態(tài)思維,去尋找有利于問題解決的變換途徑與方法.3)高考重視常用變換方法:一般與特殊的轉化、繁與簡的轉化、構造轉化、命題的等價轉化

  7數(shù)學思想方法歸納方法

  數(shù)學思想是一類科學思想,但科學思想未必就單單是數(shù)學思想。例如,分類思想是各門科學都要運用的思想(比方語文分為文學、語言和寫作,外語分為聽、說、讀、寫和譯,物理學分為力學、熱學、聲學、電學、光學和原子核物理學,化學分為無機化學和有機化學,生物學分為植物學和動物學等.中學生見到的最漂亮的分類應該是在學習哺乳綱動物時所出現(xiàn)的門(亞門)、綱(亞綱)、目、屬、科、種的分類表,它不是單由數(shù)學給予的。只有將科學思想應用于空間形式和數(shù)量關系時,才能成為數(shù)學思想。如果用一個詞語“邏輯劃分”作為標準,那么,當該邏輯劃分與數(shù)理有關時(可稱之為“數(shù)理邏輯劃分”),可以說是數(shù)學思想;當該邏輯劃分與數(shù)理無直接關系時(例如把社會中的各行各業(yè)分為工、農、兵、學、商等),不應該說是運用數(shù)學思想。同樣地,當且僅當哲學思想(例如一分為二的思想、量質互變的思想和肯定否定的思想)在數(shù)學中子以大量運用并且被“數(shù)學化”了時,它們也可以稱之為數(shù)學思想。

  基本數(shù)學思想包括:符號與變元表示的思想,集合思想,對應思想,公理化與結構思想,數(shù)形結合的思想,化歸的思想,對立統(tǒng)一的思想,整體思想,函數(shù)與方程的思想,抽樣統(tǒng)計思想,極限思想(或說無限逼近思想)等。它有兩大“基石”—符號與變元表示的思想和集合思想,又有兩大“支柱”—對應思想和公理化與結構思想。有些基本數(shù)學思想是從“基石”和“支柱”衍生出來的,例如“函數(shù)與方程的思想”衍生于符號與變元表示的思想(函數(shù)式或方程式)、集合思想(函數(shù)的定義域或方程中字母的取值范圍)和對應思想(函數(shù)的對應法則或方程中已知數(shù)、未知數(shù)的值的對應關系),所以我們說基本數(shù)學思想是體現(xiàn)或應該體現(xiàn)于“基礎數(shù)學”(而不是說“初等數(shù)學”)的具有奠基性和總結性的思維成果.基本數(shù)學思想及其衍生的數(shù)學思想,形成了一個結構性很強的網絡。中學數(shù)學教育、教學中傳授的數(shù)學思想,應該都是基本數(shù)學思想。

  所謂方法,是指人們?yōu)榱诉_到某種目的而采取的手段、途徑和行為方式中所包含的可操作的規(guī)則或模式.人們通過長期的實踐,發(fā)現(xiàn)了許多運用數(shù)學思想的手段、門路或程序.同一手段、門路或程序被重復運用了多次,并且都達到了預期的目的,便成為數(shù)學方法.數(shù)學方法是以數(shù)學為工具進行科學研究的方法,即用數(shù)學語言表達事物的狀態(tài)、關系和過程,經過推導、運算和分析,以形成解釋、判斷和預言的方法。

  宏觀的數(shù)學方法包括:模型方法,變換方法,對稱方法,無窮小方法,公理化方法,結構方法,實驗方法.微觀的且在中學數(shù)學中常用的墓本數(shù)學方法大致可以分為以下三類:l)邏輯學中的方法。例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等。這些方法既要遵從邏輯學中的基本規(guī)律和法則,又因運用于數(shù)學之中而具有數(shù)學的特色。2)數(shù)學中的一般方法。例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法.代數(shù)中常稱圖象法,解析幾何中常稱坐標法)、向量法、比較法(數(shù)學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法、同一法、數(shù)學歸納法(這與邏輯學中的不完全歸納法不同)等。這些方法極為重要,應用也很廣泛。3)數(shù)學中的特殊方法。例如配方法、待定系數(shù)法、加減法、公式法、換元法(也稱之為中間變量法)、拆項補項法(含有添加輔助元素實現(xiàn)化歸的數(shù)學思想)、因式分解諸方法,以及平行移動法、翻折法等。這些方法在解決某些數(shù)學問題時起著重要作用,不可等閑視之。

  8數(shù)學思想方法歸納方法

  適當滲透數(shù)學思想方法,優(yōu)化知識結構。在梳理基礎知識時,充分發(fā)揮思想方法在知識間的相互聯(lián)系、相互溝通中的紐帶作用,可幫助學生合理構建知識網絡,優(yōu)化思維結構。如:在函數(shù)、方程、不等式的相互聯(lián)系的復習中,利用函數(shù)思想,可以把方程和不等式分別當成函數(shù)值等于零,大于或小于零的情況,通過聯(lián)想函數(shù)圖像,可提供方程、不等式解的幾何意義,運用轉化和數(shù)形結合的思想,使孤立的三塊知識相互聯(lián)系、相互轉化。深化對知識的理解和整合,優(yōu)化了學生的認知結構。

  數(shù)學知識本身具有系統(tǒng)性,數(shù)學思想方法也具有系統(tǒng)性,對它的學習和滲透是一個循序漸進、螺旋上升的過程。在進行高考第二輪復習時,可以有目的地開設數(shù)學思想方法的專題復習講座,以高中數(shù)學中常用的數(shù)學思想方法(如:數(shù)形結合、分類討論、函數(shù)與方程、轉化與化歸)為主線,把中學數(shù)學中的基礎知識有機地串連起來,讓學生深刻領悟數(shù)學思想方法在數(shù)學學科中的支撐和統(tǒng)帥作用,進一步完善學生的認知結構,提高學生的數(shù)學能力。比如以函數(shù)思想為主線,它可以串連代數(shù)、三角、解析幾何、以及微積分初步的大部分知識:方程可以看作函數(shù)值為零的特例;不等式可以看作兩個函數(shù)值的大小比較;三角可以看作一類特殊的函數(shù)(三角函數(shù));

  解幾的曲線方程可以看作隱函數(shù),曲線可視為函數(shù)的圖形;微積分中的導數(shù)可作為研究函數(shù)性質的主要工具。在化歸思想的指導下,能使我們更深刻地理解化歸變換的策略:比如指數(shù)、對數(shù)的高級運算轉化為代數(shù)的低級運算;在方程中,三元、二元化為一元,分式方程化為整式方程;在立幾中常將空間圖形化為平面圖形,復雜圖形化為簡單圖形;解幾中常將幾何問題化歸為代數(shù)問題研究。通過思想方法的專題復習,實現(xiàn)了知識、方法和數(shù)學思想的大整合,提高了學生分析問題、解決問題的綜合能力。



解決數(shù)學問題的方法有哪些相關文章:

小學數(shù)學解決問題方法大全

數(shù)學思維方法有哪些

常用的數(shù)學教學方法有哪些

數(shù)學講授方法有哪些

學好小學數(shù)學的方法有哪些

數(shù)學的教學方法有哪些

小學數(shù)學解決問題策略

小學數(shù)學的19個解答方法

學好五年級數(shù)學的方法有哪些

初一數(shù)學有哪些有效的學習方法

451522