不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦 > 學習方法 > 初中學習方法 > 初二學習方法 > 八年級數(shù)學 > 八年級數(shù)學上冊期末試卷及答案

八年級數(shù)學上冊期末試卷及答案

時間: 妙純901 分享

八年級數(shù)學上冊期末試卷及答案

  關(guān)鍵的八年級數(shù)學期末考試就臨近了,只要努力過、奮斗過,就不會后悔。下面是小編為大家精心整理的八年級數(shù)學上冊期末試卷,僅供參考。

  八年級數(shù)學上冊期末試題

  一、選擇題:本大題共12小題,在每小題給出的四個選項中,只有一項是正確的,請把正確的選項選出來,第1-8小題選對每小題得3分,第9-12小題選對每小題得4分,選錯、不選或選出的答案超過一個均記零分.

  1.下面四個圖形分別是節(jié)能、節(jié)水、低碳和綠色食品標志,在這四個標志中,是軸對稱圖形的是(  )

  A. B. C. D.

  2.下列運算正確的是(  )

  A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2

  3. 的平方根是(  )

  A.2 B.±2 C. D.±

  4.用科學記數(shù)法表示﹣0.00059為(  )

  A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7

  5.使分式 有意義的x的取值范圍是(  )

  A.x≤3 B.x≥3 C.x≠3 D.x=3

  6.四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是(  )

  A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC

  7.若 有意義,則 的值是(  )

  A. B.2 C. D.7

  8.已知a﹣b=1且ab=2,則式子a+b的值是(  )

  A.3 B.± C.±3 D.±4

  9.如圖所示,平行四邊形ABCD的周長為4a,AC、BD相交于點O,OE⊥AC交AD于E,則△DCE的周長是(  )

  A.a B.2a C.3a D.4a

  10.已知xy<0,化簡二次根式y(tǒng) 的正確結(jié)果為(  )

  A. B. C. D.

  11.如圖,小將同學將一個直角三角形的紙片折疊,A與B重合,折痕為DE,若已知AC=4,BC=3,∠C=90°,則EC的長為(  )

  A. B. C.2 D.

  12.若關(guān)于x的分式方程 無解,則常數(shù)m的值為(  )

  A.1 B.2 C.﹣1 D.﹣2

  二、填空題:本大題共4小題,共16分,只要求填寫最后結(jié)果,每小題填對得4分.

  13.將xy﹣x+y﹣1因式分解,其結(jié)果是      .

  14.腰長為5,一條高為3的等腰三角形的底邊長為      .

  15.若x2﹣4x+4+ =0,則xy的值等于      .

  16.如圖,在四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,則∠A+∠C=      度.

  三、解答題:本大題共6小題,共64分。解答時要寫出必要的文字說明、證明過程或演算步驟。

  17.如圖所示,寫出△ABC各頂點的坐標以及△ABC關(guān)于x對稱的△A1B1C1的各頂點坐標,并畫出△ABC關(guān)于y對稱的△A2B2C2.

  18.先化簡,再求值:

  (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

  (2)( )÷ ,其中a= .

  19.列方程,解應用題.

  某中學在莒縣服裝廠訂做一批棉學生服,甲車間單獨生產(chǎn)3天完成總量的 ,這時天氣預報近期要來寒流,需要加快制作速度,這時增加了乙車間,兩個車間又共同生產(chǎn)兩天,完成了全部訂單,如果乙車間單獨制作這批棉學生服需要幾天?

  20.△ABC三邊的長分別為a、b、c,且滿足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,試判定△ABC的形狀,并證明你的結(jié)論.

  21.如圖,四邊形ABCD是平行四邊形,并且∠BCD=120°,CB=CE,CD=CF.

  (1)求證:AE=AF;

  (2)求∠EAF的度數(shù).

  22.閱讀材料:

  小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2 =(1+ )2,善于思考的小明進行了以下探索:

  設a+b =(m+n )2(其中a、b、m、n均為整數(shù)),則有a+b =m .

  a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b 的式子化為平方式的方法.

  請你仿照小明的方法探索并解決下列問題:

  (1)當a、b、m、n均為正整數(shù)時,若a+b =(m+n )2,用含m、n的式子分別表示a,b,得a=      ,b=      .

  (2)利用所探索的結(jié)論,用完全平方式表示出: =      .

  (3)請化簡: .

  八年級數(shù)學上冊期末試卷參考答案

  一、選擇題:本大題共12小題,在每小題給出的四個選項中,只有一項是正確的,請把正確的選項選出來,第1-8小題選對每小題得3分,第9-12小題選對每小題得4分,選錯、不選或選出的答案超過一個均記零分.

  1.下面四個圖形分別是節(jié)能、節(jié)水、低碳和綠色食品標志,在這四個標志中,是軸對稱圖形的是(  )

  A. B. C. D.

  【考點】軸對稱圖形.

  【分析】根據(jù)軸對稱圖形的概念求解.

  【解答】解:A、不是軸對稱圖形,故本選項錯誤;

  B、不是軸對稱圖形,故本選項錯誤;

  C、不是軸對稱圖形,故本選項錯誤;

  D、是軸對稱圖形,故本選項正確.

  故選D.

  【點評】本題考查了軸對稱圖形的知識,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.

  2.下列運算正確的是(  )

  A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2

  【考點】同底數(shù)冪的除法;合并同類項;同底數(shù)冪的乘法;二次根式的加減法.

  【分析】根據(jù)合并同類項、同底數(shù)冪的乘法、除法,即可解答.

  【解答】解:A、a+a=2a,故錯誤;

  B、a3•a2=a5,正確;

  C、 ,故錯誤;

  D、a6÷a3=a3,故錯誤;

  故選:B.

  【點評】本題考查了合并同類項、同底數(shù)冪的乘法、除法,解決本題的關(guān)鍵是熟記合并同類項、同底數(shù)冪的乘法、除法.

  3. 的平方根是(  )

  A.2 B.±2 C. D.±

  【考點】算術(shù)平方根;平方根.

  【專題】常規(guī)題型.

  【分析】先化簡 ,然后再根據(jù)平方根的定義求解即可.

  【解答】解:∵ =2,

  ∴ 的平方根是± .

  故選D.

  【點評】本題考查了平方根的定義以及算術(shù)平方根,先把 正確化簡是解題的關(guān)鍵,本題比較容易出錯.

  4.用科學記數(shù)法表示﹣0.00059為(  )

  A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7

  【考點】科學記數(shù)法—表示較小的數(shù).

  【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.

  【解答】解:﹣0.00059=﹣5.9×10﹣4,

  故選:C.

  【點評】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.

  5.使分式 有意義的x的取值范圍是(  )

  A.x≤3 B.x≥3 C.x≠3 D.x=3

  【考點】分式有意義的條件.

  【分析】分式有意義的條件是分母不等于零,從而得到x﹣3≠0.

  【解答】解:∵分式 有意義,

  ∴x﹣3≠0.

  解得:x≠3.

  故選:C.

  【點評】本題主要考查的是分式有意義的條件,掌握分式有意義時,分式的分母不為零是解題的關(guān)鍵.

  6.四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是(  )

  A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC

  【考點】平行四邊形的判定.

  【分析】根據(jù)平行四邊形判定定理進行判斷.

  【解答】解:A、由“AB∥DC,AD∥BC”可知,四邊形ABCD的兩組對邊互相平行,則該四邊形是平行四邊形.故本選項不符合題意;

  B、由“AB=DC,AD=BC”可知,四邊形ABCD的兩組對邊相等,則該四邊形是平行四邊形.故本選項不符合題意;

  C、由“AO=CO,BO=DO”可知,四邊形ABCD的兩條對角線互相平分,則該四邊形是平行四邊形.故本選項不符合題意;

  D、由“AB∥DC,AD=BC”可知,四邊形ABCD的一組對邊平行,另一組對邊相等,據(jù)此不能判定該四邊形是平行四邊形.故本選項符合題意;

  故選D.

  【點評】本題考查了平行四邊形的判定.

  (1)兩組對邊分別平行的四邊形是平行四邊形.

  (2)兩組對邊分別相等的四邊形是平行四邊形.

  (3)一組對邊平行且相等的四邊形是平行四邊形.

  (4)兩組對角分別相等的四邊形是平行四邊形.

  (5)對角線互相平分的四邊形是平行四邊形.

  7.若 有意義,則 的值是(  )

  A. B.2 C. D.7

  【考點】二次根式有意義的條件.

  【分析】根據(jù)二次根式中的被開方數(shù)必須是非負數(shù)求出x的值,根據(jù)算術(shù)平方根的概念計算即可.

  【解答】解:由題意得,x≥0,﹣x≥0,

  ∴x=0,

  則 =2,

  故選:B.

  【點評】本題考查的是二次根式有意義的條件以及算術(shù)平方根的概念,掌握二次根式中的被開方數(shù)必須是非負數(shù)是解題的關(guān)鍵.

  8.已知a﹣b=1且ab=2,則式子a+b的值是(  )

  A.3 B.± C.±3 D.±4

  【考點】完全平方公式.

  【專題】計算題;整式.

  【分析】把a﹣b=1兩邊平方,利用完全平方公式化簡,將ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可.

  【解答】解:把a﹣b=1兩邊平方得:(a﹣b)2=a2+b2﹣2ab=1,

  將ab=2代入得:a2+b2=5,

  ∴(a+b)2=a2+b2+2ab=5+4=9,

  則a+b=±3,

  故選C

  【點評】此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關(guān)鍵.

  9.如圖所示,平行四邊形ABCD的周長為4a,AC、BD相交于點O,OE⊥AC交AD于E,則△DCE的周長是(  )

  A.a B.2a C.3a D.4a

  【考點】平行四邊形的性質(zhì).

  【分析】由▱ABCD的周長為4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根據(jù)線段垂直平分線的性質(zhì),可證得AE=CE,繼而求得△DCE的周長=AD+CD.

  【解答】解:∵▱ABCD的周長為4a,

  ∴AD+CD=2a,OA=OC,

  ∵OE⊥AC,

  ∴AE=CE,

  ∴△DCE的周長為:CD+DE+CE=CD+DE+AE=CD+AD=2a.

  故選:B.

  【點評】此題考查了平行四邊形的性質(zhì)以及線段垂直平分線的性質(zhì).注意得到△DCE的周長=AD+CD是關(guān)鍵.

  10.已知xy<0,化簡二次根式y(tǒng) 的正確結(jié)果為(  )

  A. B. C. D.

  【考點】二次根式的性質(zhì)與化簡.

  【分析】先求出x、y的范圍,再根據(jù)二次根式的性質(zhì)化簡即可.

  【解答】解:∵要使 有意義,必須 ≥0,

  解得:x≥0,

  ∵xy<0,

  ∴y<0,

  ∴y =y• =﹣ ,

  故選A.

  【點評】本題考查了二次根式的性質(zhì)的應用,能正確根據(jù)二次根式的性質(zhì)進行化簡是解此題的關(guān)鍵.

  11.如圖,小將同學將一個直角三角形的紙片折疊,A與B重合,折痕為DE,若已知AC=4,BC=3,∠C=90°,則EC的長為(  )

  A. B. C.2 D.

  【考點】翻折變換(折疊問題).

  【分析】DE是邊AB的垂直平分線,則AE=BE,設AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,進而求得EC的長.

  【解答】解:∵DE垂直平分AB,

  ∴AE=BE,

  設AE=x,則BE=x,EC=4﹣x.

  在直角△BCE中,BE2=EC2+BC2,則x2=(4﹣x)2+9,

  解得:x= ,

  則EC=AC﹣AE=4﹣ = .

  故選B.

  【點評】本題考查了圖形的折疊的性質(zhì)以及勾股定理,正確理解DE是AB的垂直平分線是本題的關(guān)鍵.

  12.若關(guān)于x的分式方程 無解,則常數(shù)m的值為(  )

  A.1 B.2 C.﹣1 D.﹣2

  【考點】分式方程的解;解一元一次方程.

  【專題】計算題;轉(zhuǎn)化思想;一次方程(組)及應用;分式方程及應用.

  【分析】將分式方程去分母化為整式方程,由分式方程無解得到x=3,代入整式方程可得m的值.

  【解答】解:將方程兩邊都乘以最簡公分母(x﹣3),得:1=2(x﹣3)﹣m,

  ∵當x=3時,原分式方程無解,

  ∴1=﹣m,即m=﹣1;

  故選C.

  【點評】本題主要考查分式方程的解,對分式方程無解這一概念的理解是此題關(guān)鍵.

  二、填空題:本大題共4小題,共16分,只要求填寫最后結(jié)果,每小題填對得4分.

  13.將xy﹣x+y﹣1因式分解,其結(jié)果是 (y﹣1)(x+1) .

  【考點】因式分解-分組分解法.

  【分析】首先重新分組,進而利用提取公因式法分解因式得出答案.

  【解答】解:xy﹣x+y﹣1

  =x(y﹣1)+y﹣1

  =(y﹣1)(x+1).

  故答案為:(y﹣1)(x+1).

  【點評】此題主要考查了分組分解法分解因式,正確分組是解題關(guān)鍵.

  14.腰長為5,一條高為3的等腰三角形的底邊長為 8或 或3  .

  【考點】等腰三角形的性質(zhì);三角形三邊關(guān)系.

  【分析】根據(jù)不同邊上的高為3分類討論,利用勾股定理即可得到本題的答案.

  【解答】解:①如圖1.

  當AB=AC=5,AD=3,

  則BD=CD=4,

  所以底邊長為8;

  ②如圖2.

  當AB=AC=5,CD=3時,

  則AD=4,

  所以BD=1,

  則BC= = ,

  即此時底邊長為 ;

 ?、廴鐖D3.

  當AB=AC=5,CD=3時,

  則AD=4,

  所以BD=9,

  則BC= =3 ,

  即此時底邊長為3 .

  故答案為:8或 或3 .

  【點評】本題考查了等腰三角形的性質(zhì),勾股定理,解題的關(guān)鍵是分三種情況分類討論.

  15.若x2﹣4x+4+ =0,則xy的值等于 6 .

  【考點】解二元一次方程組;非負數(shù)的性質(zhì):偶次方;非負數(shù)的性質(zhì):算術(shù)平方根;配方法的應用.

  【專題】計算題;一次方程(組)及應用.

  【分析】已知等式變形后,利用非負數(shù)的性質(zhì)列出方程組,求出方程組的解得到x與y的值,即可確定出xy的值.

  【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0,

  ∴ ,

  解得: ,

  則xy=6.

  故答案為:6

  【點評】此題考查了解二元一次方程組,配方法的應用,以及非負數(shù)的性質(zhì),熟練掌握運算法則是解本題的關(guān)鍵.

  16.如圖,在四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,則∠A+∠C= 180 度.

  【考點】勾股定理的逆定理;勾股定理.

  【分析】勾股定理的逆定理是判定直角三角形的方法之一.

  【解答】解:連接AC,根據(jù)勾股定理得AC= =25,

  ∵AD2+DC2=AC2即72+242=252,

  ∴根據(jù)勾股定理的逆定理,△ADC也是直角三角形,∠D=90°,

  故∠A+∠C=∠D+∠B=180°,故填180.

  【點評】本題考查了勾股定理和勾股定理的逆定理,兩條定理在同一題目考查,是比較好的題目.

  三、解答題:本大題共6小題,共64分。解答時要寫出必要的文字說明、證明過程或演算步驟。

  17.如圖所示,寫出△ABC各頂點的坐標以及△ABC關(guān)于x對稱的△A1B1C1的各頂點坐標,并畫出△ABC關(guān)于y對稱的△A2B2C2.

  【考點】作圖-軸對稱變換.

  【分析】分別利用關(guān)于x軸、y軸對稱點的坐標性質(zhì)得出各對應點的位置,進而得出答案.

  【解答】解:△ABC各頂點的坐標以及△ABC關(guān)于x軸對稱的△A1B1C1的各頂點坐標:

  A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),

  如圖所示:△A2B2C2,即為所求.

  【點評】此題主要考查了軸對稱變換,得出對應點位置是解題關(guān)鍵.

  18.先化簡,再求值:

  (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2.

  (2)( )÷ ,其中a= .

  【考點】分式的化簡求值;整式的混合運算—化簡求值.

  【分析】(1)先根據(jù)整式混合運算的法則把原式進行化簡,再把x、y的值代入進行計算即可;

  (2)先根據(jù)分式混合運算的法則把原式進行化簡,再把a的值代入進行計算即可.

  【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2

  =4xy,

  當x=1,y=2時,原式=4×1×2=8;

  (2)原式= •

  = •

  =a﹣1,

  當a= 時,原式= ﹣1.

  【點評】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關(guān)鍵.

  19.列方程,解應用題.

  某中學在莒縣服裝廠訂做一批棉學生服,甲車間單獨生產(chǎn)3天完成總量的 ,這時天氣預報近期要來寒流,需要加快制作速度,這時增加了乙車間,兩個車間又共同生產(chǎn)兩天,完成了全部訂單,如果乙車間單獨制作這批棉學生服需要幾天?

  【考點】分式方程的應用.

  【分析】設乙車間單獨制作這批棉學生服需要x天,則每天能制作總量的 ;甲車間單獨生產(chǎn)3天完成總量的 ,則每天能制作總量的 ,根據(jù)總的工作量為1列出方程并解答.

  【解答】解:設乙車間單獨制作這批棉學生服需要x天,則每天能制作總量的 ;甲車間單獨生產(chǎn)3天完成總量的 ,則每天能制作總量的 ,

  根據(jù)題意,得: +2×( + )=1,

  解得x=4.5.

  經(jīng)檢驗,x=4.5是原方程的根.

  答:乙車間單獨制作這批棉學生服需要4.5天.

  【點評】本題考查了分式方程的應用.利用分式方程解應用題時,一般題目中會有兩個相等關(guān)系,這時要根據(jù)題目所要解決的問題,選擇其中的一個相等關(guān)系作為列方程的依據(jù),而另一個則用來設未知數(shù).

  20.△ABC三邊的長分別為a、b、c,且滿足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,試判定△ABC的形狀,并證明你的結(jié)論.

  【考點】因式分解的應用.

  【分析】根據(jù)完全平方公式,可得非負數(shù)的和為零,可得每個非負數(shù)為零,可得a、b、c的值,根據(jù)勾股定理逆定理,可得答案.

  【解答】解:△ABC是等腰直角三角形.

  理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2,

  ∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0,

  即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0.

  ∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0,

  ∴a﹣2=0,b﹣2=0,c﹣2 =0,

  ∴a=b=2,c=2 ,

  ∵22+22=(2 )2,

  ∴a2+b2=c2,

  所以△ABC是以c為斜邊的等腰直角三角形.

  【點評】本題考查了因式分解的應用,勾股定理逆定理,利用了非負數(shù)的和為零得出a、b、c的值是解題關(guān)鍵.

  21.如圖,四邊形ABCD是平行四邊形,并且∠BCD=120°,CB=CE,CD=CF.

  (1)求證:AE=AF;

  (2)求∠EAF的度數(shù).

  【考點】全等三角形的判定與性質(zhì);平行四邊形的性質(zhì).

  【分析】(1)尋找分別含有AE和AF的三角形,通過證明兩三角形全等得出AE=AF.

  (2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我們證出了三角形全等,將∠FAD換成等角∠AEB即可解決.

  【解答】(1)證明:∵四邊形ABCD是平行四邊形,并且∠BCD=120°,

  ∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC,

  ∵CB=CE,CD=CF,

  ∴△BEC和△DCF都是等邊三角形,

  ∴CB=CE=BE=DA,CD=CF=DF=BA,

  ∴∠ABC+∠CBE=∠ADC+∠CDF,

  即:∠ABE=∠FDA

  在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA,

  ∴△ABE≌△FDA (SAS),

  ∴AE=AF.

  (2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°,

  ∴∠BAE+∠AEB=60°,

  ∵∠AEB=∠FAD,

  ∴∠BAE+∠FAD=60°,

  ∵∠BAD=∠BCD=120°,

  ∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°.

  答:∠EAF的度數(shù)為60°.

  【點評】本題考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是尋找合適的全等三角形,通過尋找等量關(guān)系證得全等,從而得出結(jié)論.

  22.閱讀材料:

  小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2 =(1+ )2,善于思考的小明進行了以下探索:

  設a+b =(m+n )2(其中a、b、m、n均為整數(shù)),則有a+b =m .

  a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b 的式子化為平方式的方法.

  請你仿照小明的方法探索并解決下列問題:

  (1)當a、b、m、n均為正整數(shù)時,若a+b =(m+n )2,用含m、n的式子分別表示a,b,得a= m2+3n2 ,b= 2mn .

  (2)利用所探索的結(jié)論,用完全平方式表示出: = (2+ )2 .

  (3)請化簡: .

  【考點】二次根式的性質(zhì)與化簡.

  【專題】閱讀型.

  【分析】(1)利用已知直接去括號進而得出a,b的值;

  (2)直接利用完全平方公式,變形得出答案;

  (3)直接利用完全平方公式,變形化簡即可.

  【解答】解:(1)∵a+b =(m+n )2,

  ∴a+b =(m+n )2=m2+3n2+2 mn,

  ∴a=m2+3n2,b=2mn;

  故答案為:m2+3n2;2mn;

  (2) =(2+ )2;

  故答案為:(2+ )2;

  (3)∵12+6 =(3+ )2,

  ∴ = =3+ .

  【點評】此題主要考查了二次根式的性質(zhì)與化簡,正確利用完全平方公式化簡是解題關(guān)鍵.

八年級數(shù)學上冊期末試卷及答案相關(guān)文章:

1.八年級數(shù)學期末試卷及答案

2.八年級數(shù)學上冊期末試卷

3.八年級數(shù)學上學期期末試卷

4.八年級上冊數(shù)學復習題帶答案

5.八年級上冊數(shù)學期末模擬試題

2011692