不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高中數(shù)學(xué)必修四三角函數(shù)誘導(dǎo)公式

時(shí)間: 文娟843 分享

  學(xué)習(xí)數(shù)學(xué)公式記憶是必不可少少的,高中數(shù)學(xué)必修四三角函數(shù)誘導(dǎo)公式有哪些呢?下面是學(xué)習(xí)啦小編為大家整理的高中數(shù)學(xué)必修四三角函數(shù)誘導(dǎo)公式,希望對(duì)大家有所幫助!

  高中數(shù)學(xué)必修四三角函數(shù)誘導(dǎo)公式大全

  公式一:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα (k∈Z)

  cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

  cot(2kπ+α)=cotα (k∈Z)

  公式二:

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與 -α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  注意:在做題時(shí),將a看成銳角來(lái)做會(huì)比較好做。

  誘導(dǎo)公式記憶口訣

  ※規(guī)律總結(jié)

  上面這些誘導(dǎo)公式可以概括為:

  對(duì)于π/2*k ±α(k∈Z)的三角函數(shù)值,

 ?、佼?dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;

 ?、诋?dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇變偶不變)

  然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào)。

  (符號(hào)看象限)

  例如:

  sin(2π-α)=sin(4·π/2-α),k=4為偶數(shù),所以取sinα。

  當(dāng)α是銳角時(shí),2π-α∈(270°,360°),sin(2π-α)<0,符號(hào)為“-”。

  所以sin(2π-α)=-sinα

  上述的記憶口訣是:

  奇變偶不變,符號(hào)看象限。

  公式右邊的符號(hào)為把α視為銳角時(shí),角k·360°+α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函數(shù)值的符號(hào)可記憶

  水平誘導(dǎo)名不變;符號(hào)看象限。

  #

  各種三角函數(shù)在四個(gè)象限的符號(hào)如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.

  這十二字口訣的意思就是說(shuō):

  第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;

  第二象限內(nèi)只有正弦是“+”,其余全部是“-”;

  第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;

  第四象限內(nèi)只有余弦是“+”,其余全部是“-”.

  上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦

  #

  還有一種按照函數(shù)類型分象限定正負(fù):

  函數(shù)類型 第一象限 第二象限 第三象限 第四象限

  正弦 ...........+............+............—............—........

  余弦 ...........+............—............—............+........

  正切 ...........+............—............+............—........

  余切 ...........+............—............+............—........

  同角三角函數(shù)基本關(guān)系

  同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  六角形記憶法:(參看圖片或參考資料鏈接)

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  (1)倒數(shù)關(guān)系:對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);

  (2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。

  (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

  (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

  兩角和差公式

  兩角和與差的三角函數(shù)公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升冪縮角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  半角公式

  半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
看過(guò)"高中數(shù)學(xué)必修四三角函數(shù)誘導(dǎo)公式 "的還看了:

1.數(shù)學(xué)高考復(fù)習(xí)資料(誘導(dǎo)公式大全)

2.數(shù)學(xué)誘導(dǎo)公式大全

3.高三文科數(shù)學(xué)公式總結(jié) 高三文科數(shù)學(xué)公式大全

1443193