2017高二數(shù)學導數(shù)公式總結
2017高二數(shù)學導數(shù)公式總結
導數(shù)知識是高中數(shù)學學習的一個重要內(nèi)容,它是解決變量問題的基本工具,下面是學習啦小編帶來的2017高二數(shù)學導數(shù)公式總結,歡迎閱讀!
高二數(shù)學導數(shù)公式
1.①
?、?/p>
?、?/p>
2. 原函數(shù)與反函數(shù)導數(shù)關系(由三角函數(shù)導數(shù)推反三角函數(shù)的):y=f(x)的反函數(shù)是x=g(y),則有y'=1/x'.
3. 復合函數(shù)的導數(shù):
復合函數(shù)對自變量的導數(shù),等于已知函數(shù)對中間變量的導數(shù),乘以中間變量對自變量的導數(shù)--稱為鏈式法則。
4. 變現(xiàn)積分的求導法則:
(a(x),b(x)為子函數(shù))
導數(shù)的計算
計算已知函數(shù)的導函數(shù)可以按照導數(shù)的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函數(shù)都可以看作是一些簡單的函數(shù)的和、差、積、商或相互復合的結果。只要知道了這些簡單函數(shù)的導函數(shù),那么根據(jù)導數(shù)的求導法則,就可以推算出較為復雜的函數(shù)的導函數(shù)。
導數(shù)的求導法則
求導法則
由基本函數(shù)的和、差、積、商或相互復合構成的函數(shù)的導函數(shù)則可以通過函數(shù)的求導法則來推導。基本的求導法則如下:
求導的線性性:對函數(shù)的線性組合求導,等于先對其中每個部分求導后再取線性組合。
兩個函數(shù)的乘積的導函數(shù),一導乘二+一乘二導。
兩個函數(shù)的商的導函數(shù)也是一個分式。(子導乘母-子乘母導)除以母平方
復合函數(shù)的求導法則
如果有復合函數(shù),那么若要求某個函數(shù)在某一點的導數(shù),可以先運用以上方法求出這個函數(shù)的導函數(shù),再看導函數(shù)在這一點的值。
高階求導
高階導數(shù)的求法
1.直接法:由高階導數(shù)的定義逐步求高階導數(shù)。
一般用來尋找解題方法。
2.高階導數(shù)的運算法則:
(二項式定理)
3.間接法:利用已知的高階導數(shù)公式,通過四則運算,變量代換等方法。
注意:代換后函數(shù)要便于求,盡量靠攏已知公式求出階導數(shù)。
高二數(shù)學導數(shù)的基本考點
考點一:求導公式。
例1. f(x)是f(x)13x2x1的導函數(shù),則f(1)的值是 3
考點二:導數(shù)的幾何意義。
例2. 已知函數(shù)yf(x)的圖象在點M(1,f(1))處的切線方程是y
1x2,則f(1)f(1) 2
,3)處的切線方程是 例3.曲線yx32x24x2在點(1
點評:以上兩小題均是對導數(shù)的幾何意義的考查。
考點三:導數(shù)的幾何意義的應用。
例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標。
點評:本小題考查導數(shù)幾何意義的應用。解決此類問題時應注意“切點既在曲線上又在切線上”這個條件的應用。函數(shù)在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。
考點四:函數(shù)的單調(diào)性。
例5.已知fxax3xx1在R上是減函數(shù),求a的取值范圍。 32
點評:本題考查導數(shù)在函數(shù)單調(diào)性中的應用。對于高次函數(shù)單調(diào)性問題,要有求導意識。
考點五:函數(shù)的極值。
例6. 設函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點評:本題考查利用導數(shù)求函數(shù)的極值。求可導函數(shù)fx的極值步驟:
?、偾髮?shù)f'x;
?、谇骹'x0的根;③將f'x0的根在數(shù)軸上標出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負可確定并求出函數(shù)fx的極值。
考點六:函數(shù)的最值。
例7. 已知a為實數(shù),fxx24xa。求導數(shù)f'x;(2)若f'10,求fx在區(qū)間2,2上的最大值和最小值。
點評:本題考查可導函數(shù)最值的求法。求可導函數(shù)fx在區(qū)間a,b上的最值,要先求出函數(shù)fx在區(qū)間a,b上的極值,然后與fa和fb進行比較,從而得出函數(shù)的最大最小值。
考點七:導數(shù)的綜合性問題。
例8. 設函數(shù)f(x)ax3bxc(a0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x6y70垂直,導函數(shù)
(1)求a,b,c的值; f'(x)的最小值為12。
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[1,3]上的最大值和最小值。
點評:本題考查函數(shù)的奇偶性、單調(diào)性、二次函數(shù)的最值、導數(shù)的應用等基礎知識,以及推理能力和運算能力。
看了“2017高二數(shù)學導數(shù)公式總結”的人還看了: