不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高中數(shù)學(xué)的解題的方法介紹

時間: 夏萍1132 分享

  掌握正確有效的解題方法會讓學(xué)生在解題的時候可以節(jié)省很多的時間,下面學(xué)習(xí)啦的小編將為大家?guī)砀咧袛?shù)學(xué)的解題的方法介紹 ,希望能夠幫助到大家。

  高中數(shù)學(xué)的解題的方法

  確保運(yùn)算準(zhǔn)確,立足一次成功

  數(shù)學(xué)高考題的容量在120分鐘時間內(nèi)完成大小26個題,時間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對了,因?yàn)榻獯鸩粚?,再快也無意義。

  講求規(guī)范書寫,力爭既對又全

  考試的又一個特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過硬、“感情分” 也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書寫要工整,卷面能得分”講的也正是這個道理。

  面對難題,講究方法,爭取得分

  會做的題目當(dāng)然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。

  1.缺步解答。

  對一個疑難問題,確實(shí)啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語言譯成符號語言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。

  2.跳步解答。

  解題過程卡在一中間環(huán)節(jié)上時,可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對,立即否得到正確結(jié)論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時間限制,中間結(jié)論來不及得到證實(shí),就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。

  以退求進(jìn),立足特殊

  發(fā)散一般對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等??傊?,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達(dá)到對“一般”的解決。

  應(yīng)用性問題思路:面—點(diǎn)—線

  解決應(yīng)用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,求解過程和結(jié)果都不能離開實(shí)際背景。

  執(zhí)果索因,逆向思考,正難則反

  對一個問題正面思考發(fā)生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。

  回避結(jié)論的肯定與否定,解決探索性問題

  對探索性問題, 不必追求結(jié)論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。

  高中數(shù)學(xué)的做題的技巧

  1、熟悉基本的解題步驟和解題方法。

  解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。

  2、審題要認(rèn)真仔細(xì)。

  對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。

  有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時,應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  3、認(rèn)真做好歸納總結(jié)。

  在解過一定數(shù)量的習(xí)題之后,對所涉及到的知識、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對于類似的習(xí)題一目了然,可以節(jié)約大量的解題時間。

  4、熟悉習(xí)題中所涉及的內(nèi)容。

  解題、做練習(xí)只是學(xué)習(xí)過程中的一個環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時,我們的概念越清晰,對公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們在解題之前,應(yīng)通過閱讀教科書和做簡單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  5、學(xué)會畫圖。

  畫圖是一個翻譯的過程,,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。

  因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。

  6、先易后難,逐步增加習(xí)題的難度。

  人們認(rèn)識事物的過程都是從簡單到復(fù)雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。

  我們在學(xué)習(xí)時,應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達(dá)到事半功倍的效果。

  高中數(shù)學(xué)的證明題的推理方法

  一、合情推理

  1.歸納推理是由部分到整體,由個別到一般的推理,在進(jìn)行歸納時,要先根據(jù)已知的部分個體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;

  2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質(zhì),則另一個對象也具有類似的性質(zhì)。在進(jìn)行類比時,要充分考慮已知對象性質(zhì)的推理過程,然后類比推導(dǎo)類比對象的性質(zhì)。

  二、演繹推理

  演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進(jìn)行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。

  三、直接證明與間接證明

  直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。

  間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫做反證法。

  四、數(shù)學(xué)歸納法

  數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項(xiàng)公式成立。


猜你感興趣:

1.高中數(shù)學(xué)迅速提分的訣竅

2.高考數(shù)學(xué)答題九大技巧

3.改善高中數(shù)學(xué)做題慢的幾個技巧

4.高中數(shù)學(xué)九大解題技巧

5.高中數(shù)學(xué)萬能解題套路

6.高中生數(shù)學(xué)學(xué)習(xí)方法

3797889