不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學習啦>學習方法>高中學習方法>高三學習方法>高三數(shù)學>

江蘇省高三數(shù)學必背公式(3)

時間: 文娟843 分享

  51推論 任意多邊的外角和等于360°

  52平行四邊形性質定理1 平行四邊形的對角相等

  53平行四邊形性質定理2 平行四邊形的對邊相等

  54推論 夾在兩條平行線間的平行線段相等

  55平行四邊形性質定理3 平行四邊形的對角線互相平分

  56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

  58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  60矩形性質定理1 矩形的四個角都是直角

  61矩形性質定理2 矩形的對角線相等

  62矩形判定定理1 有三個角是直角的四邊形是矩形

  63矩形判定定理2 對角線相等的平行四邊形是矩形

  64菱形性質定理1 菱形的四條邊都相等

  65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66菱形面積=對角線乘積的一半,即s=(a×b)÷2

  67菱形判定定理1 四邊都相等的四邊形是菱形

  68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

  69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

  70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1 關于中心對稱的兩個圖形是全等的

  72定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

  74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

  75等腰梯形的兩條對角線相等

  76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

  77對角線相等的梯形是等腰梯形

  78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

  80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

  82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h

  83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  84 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91 相似三角形判定定理1 兩角對應相等,兩三角形相似(asa)

  92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(sas)

  94 判定定理3 三邊對應成比例,兩三角形相似(sss)

  95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

  96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97 性質定理2 相似三角形周長的比等于相似比

  98 性質定理3 相似三角形面積的比等于相似比的平方

  99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等

  于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內部可以看作是圓心的距離小于半徑的點的集合

  103圓的外部可以看作是圓心的距離大于半徑的點的集合

  104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理 不在同一直線上的三點確定一個圓。

  110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 ?、谙业拇怪逼椒志€經過圓心,并且平分弦所對的兩條弧

 ?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2 圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對稱中心的中心對稱圖形

  114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理 一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  121①直線l和⊙o相交 d

 ?、谥本€l和⊙o相切 d=r

  ③直線l和⊙o相離 d>r

  122切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質定理 圓的切線垂直于經過切點的半徑

  124推論1 經過圓心且垂直于切線的直線必經過切點

  125推論2 經過切點且垂直于切線的直線必經過圓心

  126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理 弦切角等于它所夾的弧對的圓周角

  129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的

  兩條線段的比例中項

  132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割

  線與圓交點的兩條線段長的比例中項

  133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上

  135①兩圓外離 d>r+r ②兩圓外切 d=r+r

 ?、蹆蓤A相交 r-rr)

  ④兩圓內切 d=r-r(r>r) ⑤兩圓內含dr)

  136定理 相交兩圓的連心線垂直平分兩圓的公共弦

  137定理 把圓分成n(n≥3):

 ?、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形

 ?、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  139正n邊形的每個內角都等于(n-2)×180°/n

  140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141正n邊形的面積sn=pnrn/2 p表示正n邊形的周長

  142正三角形面積√3a/4 a表示邊長

  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為

  360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144弧長計算公式:l=nπr/180

  145扇形面積公式:s扇形=nπr2/360=lr/2

  146內公切線長= d-(r-r) 外公切線長= d-(r+r)

  147等腰三角形的兩個底腳相等

  148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合

  149如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等

  150三條邊都相等的三角形叫做等邊三角

  乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數(shù)的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

  判別式

  b2-4ac=0 注:方程有兩個相等的實根

  b2-4ac>0 注:方程有兩個不等的實根

  b2-4ac<0 注:方程沒有實根,有共軛復數(shù)根

  三角函數(shù)公式

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數(shù)列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

  圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h

  正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'

  圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

  圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

  弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長

  柱體體積公式 V=s*h 圓柱體 V=pi*r2h
看過"江蘇省高考數(shù)學公式 江蘇省高三數(shù)學必背公式 "的還看了:

1.高考必備文科數(shù)學公式

2.2016高考文科數(shù)學公式

3.高考理科數(shù)學公式總結

4.2016年浙江省高考文科數(shù)學公式

江蘇省高三數(shù)學必背公式(3)

51推論 任意多邊的外角和等于360 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 遼寧數(shù)學高考大綱 遼寧省高考數(shù)學大綱解讀
    遼寧數(shù)學高考大綱 遼寧省高考數(shù)學大綱解讀

    考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是學習啦小編為大家整理的遼寧高考數(shù)學考試大綱說明,希望對大家有

  • 山東高考理科數(shù)學重點
    山東高考理科數(shù)學重點

    考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是學習啦小編為大家整理的高考數(shù)學重點知識點,希望對大家有所幫助

  • 2016山東高考文科數(shù)學真題
    2016山東高考文科數(shù)學真題

    考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是學習啦小編為大家整理的山東高考文科數(shù)學試題,希望對大家有所幫

  • 山東省高考數(shù)學文科題
    山東省高考數(shù)學文科題

    考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備。下面是學習啦小編為大家整理的山東高考文科數(shù)學試題,希望對大家有所幫

1350960