不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 2017年高考全國Ⅱ卷理數(shù)試題和答案(2)

2017年高考全國Ⅱ卷理數(shù)試題和答案(2)

時間: 夏萍1132 分享

2017年高考全國Ⅱ卷理數(shù)試題和答案

  2017年高考全國Ⅱ卷理數(shù)試題解析版

  一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。 1.( )

  A. B. C. D.

  【答案】D

  【解析】

  試題分析:由復(fù)數(shù)除法的運算法則有:,故選D。

  【考點】 復(fù)數(shù)的除法

  【名師點睛】復(fù)數(shù)的代數(shù)形式的運算主要有加、減、乘、除。除法實際上是分母實數(shù)化的過程。在做復(fù)數(shù)的除法時,要注意利用共軛復(fù)數(shù)的性質(zhì):若z1,z2互為共軛復(fù)數(shù),則z1·z2=|z1|2=|z2|2,通過分子、分母同乘以分母的共軛復(fù)數(shù)將分母實數(shù)化。

  2.設(shè)集合,。若,則( )

  A. B. C. D.

  【答案】C

  3.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

  A.1盞 B.3盞 C.5盞 D.9盞

  【答案】B

  4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

  B. C. D.

  【答案】B

  【解析】

  試題分析:由題意,該幾何體是一個組合體,下半部分是一個底面半徑為3,高為4的圓柱,其體積,上半部分是一個底面半徑為3,高為4的圓柱的一半,其體積,該組合體的體積為:。故選B。

  【考點】 三視圖;組合體的體積

  【名師點睛】在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮。求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解。

  5.設(shè),滿足約束條件,則的最小值是( )

  A. B. C. D.

  【答案】A

  6.安排3名志愿者完成4項工作,每人至少完成1項,每項工作由1人完成,則不同的安排方式共有( )

  A.12種 B.18種 C.24種 D.36種

  【答案】D

  【解析】

  試題分析:由題意可得,一人完成兩項工作,其余兩人每人完成一項工作,據(jù)此可得,只要把工作分成三份:有種方法,然后進(jìn)行全排列即可,由乘法原理,不同的安排方式共有種方法。 故選D。

  【考點】 排列與組合;分步乘法計數(shù)原理

  【名師點睛】(1)解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步。具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)。

  (2)不同元素的分配問題,往往是先分組再分配。在分組時,通常有三種類型:不均勻分組;均勻分組;部分均勻分組,注意各種分組類型中,不同分組方法的求法。

  7.甲、乙、丙、丁四位同學(xué)一起去向老師詢問成語競賽的成績。老師說:你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績??春蠹讓Υ蠹艺f:我還是不知道我的成績。根據(jù)以上信息,則( )

  A.乙可以知道四人的成績 B.丁可以知道四人的成績

  C.乙、丁可以知道對方的成績 D.乙、丁可以知道自己的成績

  【答案】D

  8.執(zhí)行右面的程序框圖,如果輸入的,則輸出的( )

  A.2 B.3 C.4 D.5

  【答案】B

  (3)按照題目的要求完成解答并驗證。

  9.若雙曲線(,)的一條漸近線被圓所截得的弦長為2,則的離心率為( )

  A.2 B. C. D.

  【答案】A

  10.已知直三棱柱中,,,,則異面直線與所成角的余弦值為( )

  A. B. C. D.

  【答案】C

  11.若是函數(shù)的極值點,則的極小值為( )

  A. B. C. D.1

  【答案】A

  【解析】

  試題分析:由題可得

  因為,所以,,故

  令,解得或,所以在單調(diào)遞增,在單調(diào)遞減

  所以極小值為,故選A。

  【考點】 函數(shù)的極值;函數(shù)的單調(diào)性

  【名師點睛】(1)可導(dǎo)函數(shù)y=f(x)在點x0處取得極值的充要條件是f′(x0)=0,且在x0左側(cè)與右側(cè)f′(x)的符號不同。

  (2)若f(x)在(a,b)內(nèi)有極值,那么f(x)在(a,b)內(nèi)絕不是單調(diào)函數(shù),即在某區(qū)間上單調(diào)增或減的函數(shù)沒有極值。

  12.已知是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則的最小是( )

  A. B. C. D.

  【答案】B

  二、填空題:本題共4小題,每小題5分,共20分。

  13.一批產(chǎn)品的二等品率為,從這批產(chǎn)品中每次隨機取一件,有放回地抽取次,表示抽到的二等品件數(shù),則 。

  【答案】

  14.函數(shù)()的最大值是 。

  【答案】1

  【解析】

  試題分析:化簡三角函數(shù)的解析式:

  ,

  由自變量的范圍:可得:,

  當(dāng)時,函數(shù)取得最大值1。

  【考點】 三角變換,復(fù)合型二次函數(shù)的最值。

  【名師點睛】本題經(jīng)三角函數(shù)式的化簡將三角函數(shù)的問題轉(zhuǎn)化為二次函數(shù)的問題,二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,有關(guān)二次函數(shù)的問題,數(shù)形結(jié)合,密切聯(lián)系圖象是探求解題思路的有效方法。一般從:開口方向;對稱軸位置;判別式;端點函數(shù)值符號四個方面分析。

  15.等差數(shù)列的前項和為,,,則 。

  【答案】

  【解析】

  試題分析:設(shè)等差數(shù)列的首項為,公差為,

  由題意有: ,解得 ,

  數(shù)列的前n項和,

  裂項有:,據(jù)此:

  。

  【考點】 等差數(shù)列前n項和公式;裂項求和。

  【名師點睛】等差數(shù)列的通項公式及前n項和公式,共涉及五個量a1,an,d,n,Sn,知其中三個就能求另外兩個,體現(xiàn)了用方程的思想解決問題。數(shù)列的通項公式和前n項和公式在解題中起到變量代換作用,而a1和d是等差數(shù)列的兩個基本量,用它們表示已知和未知是常用方法。使用裂項法求和時,要注意正負(fù)項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質(zhì)上造成正負(fù)相消是此法的根源與目的

  16.已知是拋物線的焦點,是上一點,的延長線交軸于點。若為的中點,則 。

  【答案】6

  【考點】拋物線的定義;梯形中位線在解析幾何中的應(yīng)用。

  【名師點睛】拋物線的定義是解決拋物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點到焦點的距離、拋物線上的點到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化。如果問題中涉及拋物線的焦點和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線定義就能解決問題。因此,涉及拋物線的焦半徑、焦點弦問題,可以優(yōu)先考慮利用拋物線的定義轉(zhuǎn)化為點到準(zhǔn)線的距離,這樣就可以使問題簡單化。

  三、解答題:共70分。解答應(yīng)寫出文字說明、解答過程或演算步驟。第17~21題為必做題,每個試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。

  (一)必考題:共60分。

  17.(12分)

  的內(nèi)角所對的邊分別為,已知,

  (1)求;

  (2)若,的面積為,求。

  【答案】(1);

  (2)。

  18.(12分)

  海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg)某頻率分布直方圖如下:

  設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg, 新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;

  填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

  箱產(chǎn)量<50kg 箱產(chǎn)量≥50kg 舊養(yǎng)殖法 新養(yǎng)殖法

  根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01)

  附:

  【答案】(1);

  (2) 有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);

  (3)。

  (2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表

  箱產(chǎn)量 箱產(chǎn)量 舊養(yǎng)殖法 62 38 新養(yǎng)殖法 34 66

  由于,故有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)。

  19.(12分)

  如圖,四棱錐P-ABCD中,側(cè)面PAD為等比三角形且垂直于底面ABCD, E是PD的中點。

  (1)證明:直線 平面PAB;

  (2)點M在棱PC 上,且直線BM與底面ABCD所成角為 ,求二面角的余弦值。

  【答案】(1)證明略;

  (2) 。

  (2)由已知得,以A為坐標(biāo)原點,的方向為x軸正方向,為單位長,

  建立如圖所示的空間直角坐標(biāo)系,

  則,,,,,,

  設(shè)則,

  因為BM與底面ABCD所成的角為45°,而是底面ABCD的法向量,

  【考點】 判定線面平行;面面角的向量求法

  【名師點睛】(1)求解本題要注意兩點:一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進(jìn)行向量運算,要認(rèn)真細(xì)心,準(zhǔn)確計算。

  (2)設(shè)m,n分別為平面α,β的法向量,則二面角θ與互補或相等,故有|cos θ|=|cos|=。求解時一定要注意結(jié)合實際圖形判斷所求角是銳角還是鈍角。

  20. (12分)

  設(shè)O為坐標(biāo)原點,動點M在橢圓C:上,過M作x軸的垂線,垂足為N,點P滿足。

  求點P的軌跡方程;

  (2)設(shè)點Q在直線上,且。證明:過點P且垂直于OQ的直線l過C的左焦點F。

  【答案】(1) 。

  (2)證明略。

  (2)由題意知。設(shè),則

  ,

  。

  由得,又由(1)知,故

  。

  所以,即。又過點P存在唯一直線垂直于OQ,所以過點P且垂直于OQ的直線過C的左焦點F。

  【考點】 軌跡方程的求解;直線過定點問題。

  【名師點睛】求軌跡方程的常用方法有:

  (1)直接法:直接利用條件建立x,y之間的關(guān)系F(x,y)=0。

  (2)待定系數(shù)法:已知所求曲線的類型,求曲線方程。

  (3)定義法:先根據(jù)條件得出動點的軌跡是某種已知曲線,再由曲線的定義直接寫出動點的軌跡方程。

  (4)代入(相關(guān)點)法:動點P(x,y)依賴于另一動點Q(x0,y0)的變化而運動,常利用代入法求動點P(x,y)的軌跡方程。

  21.(12分)

  已知函數(shù),且。

  (1)求;

  (2)證明:存在唯一的極大值點,且。

  【答案】(1);

  (2)證明略。

  (2)由(1)知 ,。

  設(shè),則。

  當(dāng) 時, ;當(dāng) 時, ,

  所以 在 單調(diào)遞減,在 單調(diào)遞增。

  (二)選考題:共10分。請考生在第22、23題中任選一題作答。如果多做,按所做的第一題計分。

  22。[選修4-4:坐標(biāo)系與參數(shù)方程](10分)

  在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為。

  (1)M為曲線上的動點,點P在線段OM上,且滿足,求點P的軌跡的直角坐標(biāo)方程;

  (2)設(shè)點A的極坐標(biāo)為,點B在曲線上,求面積的最大值。

  【答案】(1);

  (2) 。

  【考點】 圓的極坐標(biāo)方程與直角坐標(biāo)方程;三角形面積的最值。

  【名師點睛】本題考查了極坐標(biāo)方程的求法及應(yīng)用。重點考查了轉(zhuǎn)化與化歸能力。遇到求曲線交點、距離、線段長等幾何問題時,求解的一般方法是分別化為普通方程和直角坐標(biāo)方程后求解,或者直接利用極坐標(biāo)的幾何意義求解。要結(jié)合題目本身特點,確定選擇何種方程。

  23.[選修4-5:不等式選講](10分)

  已知。證明:

  (1);

  (2)。

  【答案】(1)證明略;


猜你感興趣:

1.2017全國卷2歷史高考題

2.2017高考理科數(shù)學(xué)試卷及答案

3.2017高考理科數(shù)學(xué)壓軸題

4.2017重慶高考理科數(shù)學(xué)解答題分值及答題套路

5.2017高考理科數(shù)學(xué)試題

6.2017年全國高考理科數(shù)學(xué)試卷

3785702