不卡AV在线|网页在线观看无码高清|亚洲国产亚洲国产|国产伦精品一区二区三区免费视频

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級數(shù)學(xué) > 北師大版九年級數(shù)學(xué)上冊期末試卷

北師大版九年級數(shù)學(xué)上冊期末試卷

時間: 鄭曉823 分享

北師大版九年級數(shù)學(xué)上冊期末試卷

  同學(xué)們在檢驗自己的數(shù)學(xué)學(xué)習(xí)成果最直接的方法便是通過試題,同學(xué)們要準(zhǔn)備哪些數(shù)學(xué)期末試卷來練習(xí)呢?下面是學(xué)習(xí)啦小編為大家?guī)淼年P(guān)于北師大版九年級數(shù)學(xué)上冊期末試卷,希望會給大家?guī)韼椭?/p>

  北師大版九年級數(shù)學(xué)上冊期末試卷:

  一、選擇題(本大題共6小題,每小題2分,共12分.在每小題所給出的四個選項中,恰有一項是符合題目要求的,請將正確選項前的字母代號填涂在答題卡相應(yīng)位置上)

  1.方程x(x+2)=0的解是(  )

  A.﹣2 B.0,﹣2 C.0,2 D.無實數(shù)根

  【考點】解一元二次方程-因式分解法.

  【分析】根據(jù)方程即可得出兩個一元一次方程,求出方程的解即可;

  【解答】解:x(x+2)=0,

  x=0,x+2=0,

  x1=0,x2=﹣2,

  故選B.

  【點評】本題考查了解一元二次方程的應(yīng)用,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.

  2.兩個相似三角形的相似比是2:3,則這兩個三角形的面積比是(  )

  A. : B.2:3 C.2:5 D.4:9

  【考點】相似三角形的性質(zhì).

  【分析】根據(jù)相似三角形面積的比等于相似比的平方解答即可.

  【解答】解:∵兩個相似三角形的相似比是2:3,

  ∴這兩個三角形的面積比是4:9,

  故選:D.

  【點評】本題考查的是相似三角形的性質(zhì),掌握相似三角形面積的比等于相似比的平方是解題的關(guān)鍵.

  3.在△ABC中,∠C=90°,AC=2,BC=1,則cosA的值是(  )

  A. B. C. D.

  【考點】銳角三角函數(shù)的定義.

  【分析】根據(jù)勾股定理求出AB,根據(jù)余弦的定義計算即可.

  【解答】解:∵∠C=90°,AC=2,BC=1,

  ∴AB= = ,

  ∴cosA= = ,

  故選:D.

  【點評】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.

  4.已知A(﹣1,y1),B(2,y2)是拋物線y=﹣(x+2)2+3上的兩點,則y1,y2的大小關(guān)系為(  )

  A.y1>y2 B.y1

  【考點】二次函數(shù)象上點的坐標(biāo)特征.

  【分析】拋物線的對稱軸為直線x=﹣2,根據(jù)二次函數(shù)的性質(zhì),拋物線開口向下,在對稱軸的右側(cè)y隨x的增大而減小,即可判定.

  【解答】解:∵y=﹣(x+2)2+3,

  ∴拋物線的對稱軸為直線x=﹣2,拋物線開口向下,

  ∴當(dāng)x>﹣2,y隨x的增大而減小,

  ∵﹣2<﹣1<2,

  所以y1>y2.

  故選A.

  【點評】本題考查了二次函數(shù)象上點的坐標(biāo)特征:二次函數(shù)象上點的坐標(biāo)滿足其解析式.也考查了二次函數(shù)的性質(zhì).

  5.小明為檢驗M、N、P、Q四點是否共圓,用尺規(guī)分別作了MN、MQ的垂直平分線交于點O,則M、N、P、Q四點中,不一定在以O(shè)為圓心,OM為半徑的圓上的點是(  )

  A.點M B.點N C.點P D.點Q

  【考點】點與圓的位置關(guān)系;線段垂直平分線的性質(zhì).

  【分析】連接OM,ON,OQ,OP,由線段垂直平分線的性質(zhì)可得出OM=ON=OQ,據(jù)此可得出結(jié)論.

  【解答】解:連接OM,ON,OQ,OP,

  ∵MN、MQ的垂直平分線交于點O,

  ∴OM=ON=OQ,

  ∴M、N、Q再以點O為圓心的圓上,OP與ON的大小不能確定,

  ∴點P不一定在圓上.

  故選C.

  【點評】本題考查的是點與圓的位置關(guān)系及線段垂直平分線的性質(zhì),熟知線段垂直平分線上任意一點,到線段兩端點的距離相等是解答此題的關(guān)鍵.

  6.在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是(  )

  A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4

  【考點】直線與圓的位置關(guān)系;三角形的內(nèi)切圓與內(nèi)心.

  【分析】作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,根據(jù)題意得出四邊形OECF是正方形,得出OF=CF,由勾股定理得出AB= =5,由內(nèi)心的性質(zhì)得出CF=OF=1,AF=AC﹣CF=3,由勾股定理求出OA,由直線與圓的位置關(guān)系,即可得出結(jié)果.

  【解答】解:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,連接OA、OB,如所示

  則四邊形OECF是正方形,

  ∴OF=CF=OE=CE,

  ∵∠C=90°,AC=4,BC=3,

  ∴AB= =5,

  ∵O是△ABC的內(nèi)心,

  ∴CE=CF=OF=OE= (AC+BC﹣AB)=1,

  ∴AF=AC﹣CF=3,BE=BC﹣CE=2,

  ∴OA= = = ,OB= = = ,

  當(dāng)r=1時,以O(shè)為圓心,r為半徑的圓與線段AB有唯一交點;

  當(dāng)1

  當(dāng)

  ∴以O(shè)為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是1≤r≤ ;

  故選:C.

  【點評】本題考查了直線與圓的位置關(guān)系、三角形的內(nèi)切圓與內(nèi)心、勾股定理、直角三角形內(nèi)切圓半徑的計算等知識;熟練掌握直線與圓的位置關(guān)系,由勾股定理求出OA是解決問題的關(guān)鍵.

  二、填空題(本大題共10小題,每小題2分,共20分.不需寫出解答過程,請把答案直接填寫在答題卡相應(yīng)位置上)

  7.一組數(shù)據(jù)﹣2,﹣1,0,3,5的極差是 7 .

  【考點】極差.

  【分析】根據(jù)極差的定義即可求得.

  【解答】解:由題意可知,極差為5﹣(﹣2)=7.

  故答案為:7.

  【點評】此題考查了極差,極差反映了一組數(shù)據(jù)變化范圍的大小,求極差的方法是用一組數(shù)據(jù)中的最大值減去最小值.注意:①極差的單位與原數(shù)據(jù)單位一致.②如果數(shù)據(jù)的平均數(shù)、中位數(shù)、極差都完全相同,此時用極差來反映數(shù)據(jù)的離散程度就顯得不準(zhǔn)確.

  8.某車間生產(chǎn)的零件不合格的概率為 .如果每天從他們生產(chǎn)的零件中任取10個做試驗,那么在大量的重復(fù)試驗中,平均來說, 100 天會查出1個次品.

  【考點】概率的意義.

  【分析】根據(jù)題意首先得出抽取1000個零件需要100天,進而得出答案.

  【解答】解:∵某車間生產(chǎn)的零件不合格的概率為 ,每天從他們生產(chǎn)的零件中任取10個做試驗,

  ∴抽取1000個零件需要100天,

  則100天會查出1個次品.

  故答案為:100.

  【點評】此題主要考查了概率的意義,正確理解 的意義是解題關(guān)鍵.

  9.拋擲一枚質(zhì)地均勻的硬幣3次,3次拋擲的結(jié)果都是正面朝上的概率是   .

  【考點】列表法與樹狀法.

  【分析】首先根據(jù)題意畫出樹狀,然后由樹狀求得所有等可能的結(jié)果與3次拋擲的結(jié)果都是正面朝上的情況,再利用概率公式求解即可求得答案.

  【解答】解:畫樹狀得:

  ∵共有8種等可能的結(jié)果,3次拋擲的結(jié)果都是正面朝上的只有1種情況,

  ∴3次拋擲的結(jié)果都是正面朝上的概率是: .

  故答案為: .

  【點評】此題考查的是用列表法或樹狀法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.

  10.某校為了解全校1300名學(xué)生課外閱讀的情況,隨機調(diào)查了50名學(xué)生一周的課外閱讀時間,并繪制成如統(tǒng)計表.根據(jù)表中數(shù)據(jù),估計該校1300名學(xué)生一周的課外閱讀時間不少于7小時的人數(shù)為 520 人.

  時間(小時) 4 5 6 7 8

  人數(shù)(人) 3 9 18 15 5

  【考點】用樣本估計總體;加權(quán)平均數(shù).

  【分析】用所有學(xué)生數(shù)乘以課外閱讀時間不少于7小時的人數(shù)所占的百分比即可.

  【解答】解:該校1300名學(xué)生一周的課外閱讀時間不少于7小時的人數(shù)是1300× =520人.

  故答案為:520.

  【點評】本題考查了用樣本估計總體的知識,解題的關(guān)鍵是求得樣本中不少于7小時的人數(shù)所占的百分比.

  11.PA、PB分別切⊙O于點A、B,若∠P=70°,則∠C的大小為 55 (度).

  【考點】切線的性質(zhì).

  【分析】首先連接OA,OB,由PA、PB分別切⊙O于點A、B,根據(jù)切線的性質(zhì)可得:OA⊥PA,OB⊥PB,然后由四邊形的內(nèi)角和等于360°,求得∠AOB的度數(shù),又由圓周角定理,即可求得答案.

  【解答】解:連接OA,OB,

  ∵PA、PB分別切⊙O于點A、B,

  ∴OA⊥PA,OB⊥PB,

  即∠PAO=∠PBO=90°,

  ∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,

  ∴∠C= ∠AOB=55°.

  故答案為:55.

  【點評】此題考查了切線的性質(zhì)以及圓周角定理.此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.

  12.在正八邊形ABCDEFGH中,AC、GC是兩條對角線,則tan∠ACG= 1 .

  【考點】正多邊形和圓.

  【分析】首先證明 = = 圓周長,然后求出 = ×360°=90°,問題即可解決.

  【解答】解:設(shè)正八邊形ABCDEFGH的外接圓為⊙O;

  ∵正八邊形ABCDEFGH的各邊相等,

  ∴ = = 圓周長,

  ∴ = ×360°=90°,

  ∴圓周角∠ACG= ×90°=45°.

  ∴tan∠ACG=1.

  故答案為:1.

  【點評】本題考查的是正多邊形和圓,該題以正多邊形及其外接圓為載體,以正多邊形的性質(zhì)及其應(yīng)用的考查為核心構(gòu)造而成;對分析問題解決問題能力提出了一定的要求.

  13.沿一條母線將圓錐側(cè)面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑r=2cm,扇形的圓心角θ=120°,則該圓錐的母線長l為 6 cm.

  【考點】圓錐的計算.

  【分析】易得圓錐的底面周長,也就是側(cè)面展開的弧長,進而利用弧長公式即可求得圓錐的母線長.

  【解答】解:圓錐的底面周長=2π×2=4πcm,

  設(shè)圓錐的母線長為R,則: =4π,

  解得R=6.

  故答案為:6.

  【點評】本題考查了圓錐的計算,用到的知識點為:圓錐的側(cè)面展開的弧長等于底面周長;弧長公式為: .

  14.小明做實驗時發(fā)現(xiàn),當(dāng)三角板中30°角的頂點A在⊙O上移動,三角板的兩邊與⊙O相交于點P、Q時, 的長度不變.若⊙O的半徑為9,則 的長等于 3π .

  【考點】弧長的計算.

  【分析】連結(jié)OP、OQ,根據(jù)在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,得出∠POQ=2∠A=60°,再根據(jù)弧長公式列式計算即可.

  【解答】解:連結(jié)OP、OQ,則∠POQ=2∠A=60°.

  ∵⊙O的半徑為9,

  ∴ 的長= =3π.

  故答案為3π.

  【點評】本題考查了弧長的計算,圓周角定,解答本題的關(guān)鍵是熟練掌握弧長的計算公式以及圓周角定理的內(nèi)容.

  15.四邊形ABCD內(nèi)接于⊙O,若⊙O的半徑為6,∠A=130°,則扇形OBAD的面積為 10π .

  【考點】扇形面積的計算;圓內(nèi)接四邊形的性質(zhì).

  【專題】計算題.

  【分析】連結(jié)OB、OD,先利用圓內(nèi)接四邊形的性質(zhì)計算出∠C=180°﹣∠A=50°,再根據(jù)圓周角定理得到∠AOD=2∠C=100°,然后利用扇形的面積公式計算扇形OBAD的面積.

  【解答】解:連結(jié)OB、OD,

  ∵∠A+∠C=180°,

  ∴∠C=180°﹣130°=50°,

  ∴∠AOD=2∠C=100°,

  ∴扇形OBAD的面積= =10π.

  故答案為10π.

  【點評】本題考查了扇形面積的計算:扇形面積計算公式:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則 S扇形= •πR2或S扇形= lR(其中l(wèi)為扇形的弧長).也考查了圓周角定理.

  16.某數(shù)學(xué)興趣小組研究二次函數(shù)y=mx2﹣2mx+1(m≠0)的象時發(fā)現(xiàn):無論m如何變化,該象總經(jīng)過兩個定點(0,1)和( 2 , 1 ).

  【考點】二次函數(shù)象上點的坐標(biāo)特征.

  【分析】先把原函數(shù)化為y=mx(x﹣2)+1的形式,再根據(jù)當(dāng)x=0或x﹣2=0時函數(shù)值與m值無關(guān),把x的值代入函數(shù)解析式即可得出y的值,進而得出兩點坐標(biāo).

  【解答】解:∵原函數(shù)化為y=mx(x﹣2)+1的形式,

  ∴當(dāng)x=0或x﹣2=0時函數(shù)值與m值無關(guān),

  ∵當(dāng)x=0時,y=1;當(dāng)x=2時,y=1,

  ∴兩定點坐標(biāo)為:(0,1),(2,1).

  故答案為:2,1.

  【點評】本題考查的是二次函數(shù)象上點的坐標(biāo)特點,根據(jù)題意把函數(shù)化為y=mx(x﹣2)+1的形式是解答此題的關(guān)鍵.

  三、解答題(本大題共11小題,共88分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)

  17.(1)計算:sin45°﹣cos30°tan60°

  (2)解方程:x2﹣4x﹣1=0.

  【考點】特殊角的三角函數(shù)值;解一元二次方程-公式法.

  【分析】(1)將特殊角的三角函數(shù)值代入求解;

  (2)利用公式法求解一元二次方程即可.

  【解答】解:(1)原式= ﹣ ×

  = ﹣

  = ;

  (2)∵a=1,b=﹣4,c=﹣1,

  △=b2﹣4ac=20>0,

  ∴x= ,

  即x1=2+ ,x2=2﹣ .

  【點評】本題考查了特殊角的三角函數(shù)值以及利用公式法求解一元二次方程,解答本題的關(guān)鍵是掌握特殊角的三角函數(shù)值以及解一元二次方程的方法.

  18.利用標(biāo)桿BE測量建筑物的高度,如果標(biāo)桿BE長1.2m,測得AB=1.6m,BC=8.4m,樓高CD是多少?

  【考點】相似三角形的應(yīng)用.

  【專題】探究型.

  【分析】先根據(jù)題意得出△ABE∽△ACD,再根據(jù)相似三角形的對應(yīng)邊成比例即可求出CD的值.

  【解答】解:∵EB⊥AC,DC⊥AC,

  ∴EB∥DC,

  ∴△ABE∽△ACD,

  ∴ = ,

  ∵BE=1.2,AB=1.6,BC=8.4,

  ∴AC=10,

  ∴ = ,

  ∴CD=7.5.

  答:樓高CD是7.5m.

  【點評】本題考查的是相似三角形的應(yīng)用,熟知相似三角形的對應(yīng)邊成比例的性質(zhì)是解答此題的關(guān)鍵.

  19.趙州橋的主橋拱是圓弧形,它的跨度(弧所對的弦)長為37.4m,拱高(弧的中點到弦的距離)為7.2m,請求出趙州橋的主橋拱半徑(結(jié)果保留小數(shù)點后一位).

  【考點】垂徑定理的應(yīng)用;勾股定理.

  【分析】將拱形進行補充,構(gòu)造直角三角形,利用勾股定理和垂徑定理解答.

  【解答】解:設(shè)O為圓心,作OD⊥AB于D,交弧AB于C,如所示:

  ∵拱橋的跨度AB=37.4m,拱高CD=7.2m,

  ∴AD= AB=18.7m,

  ∴AD2=OA2﹣(OC﹣CD)2,即18.72=AO2﹣(AO﹣7.2)2,

  解得:AO≈27.9m.

  即圓弧半徑為27.9m.

  答:趙州橋的主橋拱半徑為27.9m.

  【點評】本題考查了垂徑定理和勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.

  20.一次學(xué)科測驗,學(xué)生得分均為整數(shù),滿分10分,成績達到6分以上為合格.成績達到9分為優(yōu)秀.這次測驗中甲乙兩組學(xué)生成績分布的條形統(tǒng)計如下:

  (1)請補充完成下面的成績統(tǒng)計分析表:

  平均分 方差 中位數(shù) 合格率 優(yōu)秀率

  甲組 6.9 2.4 91.7% 16.7%

  乙組 1.3 83.3% 8.3%

  (2)甲組學(xué)生說他們的合格率、優(yōu)秀率均高于乙組,所以他們的成績好于乙組.但乙組學(xué)生不同意甲組學(xué)生的說法,認為他們組的成績要高于甲組.請你給出三條支持乙組學(xué)生觀點的理由.

  【考點】條形統(tǒng)計;加權(quán)平均數(shù);中位數(shù);方差.

  【專題】表型.

  【分析】(1)本題需先根據(jù)中位數(shù)的定義,再結(jié)合統(tǒng)計得出它們的平均分和中位數(shù)即可求出答案.

  (2)本題需先根據(jù)統(tǒng)計,再結(jié)合它們的合格率、優(yōu)秀率說出它們各自的觀點是本題所求的答案.

  【解答】解:(1)從統(tǒng)計中可以看出:

  甲組:中位數(shù)7;

  乙組:平均分7,中位數(shù)7;

  (2)①因為乙組學(xué)生的平均成績高于甲組學(xué)生的平均成績,所以乙組學(xué)生的成績好于甲組;

  ②因為甲乙兩組學(xué)生成績的平均分相差不大,而乙組學(xué)生的方差低于甲組學(xué)生的方差,說明乙組學(xué)生成績的波動性比甲組小,所以乙組學(xué)生的成績好于甲組;

 ?、垡驗橐医M7分以上人數(shù)多于甲組7分以上人數(shù),所以乙組學(xué)生的成績好于甲組.

  【點評】本題考查的是條形統(tǒng)計的綜合運用.讀懂統(tǒng)計,從統(tǒng)計中得到必要的信息是解決問題的關(guān)鍵.

  21.一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

  (1)用樹狀或列表法求出小穎參加比賽的概率;

  (2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

  【考點】游戲公平性.

  【專題】壓軸題.

  【分析】(1)首先根據(jù)題意畫出樹狀,由樹狀求得所有等可能的結(jié)果與兩指針?biāo)笖?shù)字之和和小于4的情況,則可求得小穎參加比賽的概率;

  (2)根據(jù)小穎獲勝與小亮獲勝的概率,比較概率是否相等,即可判定游戲是否公平;使游戲公平,只要概率相等即可.

  【解答】解:(1)畫樹狀得:

  ∵共有12種等可能的結(jié)果,所指數(shù)字之和小于4的有3種情況,

  ∴P(和小于4)= = ,

  ∴小穎參加比賽的概率為: ;

  (2)不公平,

  ∵P(小穎)= ,

  P(小亮)= .

  ∴P(和小于4)≠P(和大于等于4),

  ∴游戲不公平;

  可改為:若兩個數(shù)字之和小于5,則小穎去參賽;否則,小亮去參賽.

  【點評】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.

  22.已知關(guān)于x的一元二次方程x2﹣x+m=0有兩個不相等的實數(shù)根.

  (1)求實數(shù)m的取值范圍;

  (2)若方程的兩個實數(shù)根為x1、x2,且x1+x2+x1•x2=m2﹣1,求實數(shù)m的值.

  【考點】根的判別式;根與系數(shù)的關(guān)系.

  【分析】(1)由關(guān)于x的一元二次方程x2﹣x+m=0有兩個不相等的實數(shù)根,可得△>0,繼而求得實數(shù)m的取值范圍;

  (2)由方程的兩個實數(shù)根為x1、x2,且x1+x2+x1•x2=m2﹣1,可得方程1+m=m2﹣1,繼而求得答案.

  【解答】解:(1)∵方程有兩個不相等的實數(shù)根,

  ∴△=b2﹣4ac=1﹣4m>0,

  即m< ;

  (2)由根與系數(shù)的關(guān)系可知:x1+x2=1,x1•x2=m,

  ∴1+m=m2﹣1,

  整理得:m2﹣m﹣2=0,

  解得:m=﹣1或m=2,

  ∵m< ,

  ∴所求m的值為﹣1.

  【點評】此題考查了根的判別式以及根與系數(shù)的關(guān)系.注意△>0⇔方程有兩個不相等的實數(shù)根,若二次項系數(shù)為1,常用以下關(guān)系:x1,x2是方程x2+px+q=0的兩根時,x1+x2=﹣p,x1x2=q.

  23.用40cm長的鐵絲圍成一個扇形,求此扇形面積的最大值.

  【考點】扇形面積的計算;二次函數(shù)的最值.

  【分析】設(shè)出圓的半徑和弧長,由扇形的面積公式S扇形= lr,得出關(guān)于半徑的二次函數(shù),由二次函數(shù)的頂點坐標(biāo)得出扇形面積的最大值.

  【解答】解:設(shè)半徑為r,弧長為l,則40=2r+l,

  ∴l=40﹣2r,

  ∴S扇形= lr= r (40﹣2r)=﹣r2+20r=﹣(r﹣10)2+100,

  ∴當(dāng)半徑為10時,扇形面積最大,最大值為100cm2.

  【點評】本題考查了扇形的面積公式,以及二次函數(shù)的最值問題,用扇形的半徑表示成面積的二次函數(shù)是解題的關(guān)鍵.

  24.一枚運載火箭從地面L處發(fā)射,當(dāng)火箭到達A點時,從位于距發(fā)射架底部4km處的地面雷達站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結(jié)果取小數(shù)點后兩位)?

  (參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,

  sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)

  【考點】解直角三角形的應(yīng)用-仰角俯角問題.

  【專題】探究型.

  【分析】根據(jù)題意可以得到AL和BL的長度,從而可以得到AB的長度,根據(jù)由A到B用的時間為1s,從而可以求得這枚火箭從A到B的平均速度.

  【解答】解:∵在Rt△ALR中,tan43°= ,LR=4,

  ∴AL=4×0.933=3.732,

  ∵在Rt△BLR中,tan45.72°= ,LR=4,

  ∴BL=4×1.025=4.1,

  ∴AB=4.1﹣3.732=0.368≈0.37,

  ∵火箭從A到B用時1s,

  ∴火箭從A到B的平均速度為:0.37÷1=0.37km/s,

  即這枚火箭從A到B的平均速度是0.37km/s.

  【點評】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是明確題意,找出所求問題需要的條件.

  25.要設(shè)計一本畫冊的封面,封面長40cm,寬30cm,正中央是一個與整個封面長寬比例相同的矩形畫.如果要使四周的邊襯所占面積是封面面積的 ,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù): ≈2.236).

  【考點】一元二次方程的應(yīng)用.

  【專題】幾何形問題.

  【分析】設(shè)上、下邊襯寬均為4xcm,左、右邊襯寬均為3xcm,根據(jù)封面的面積關(guān)系建立方程求出其解即可.

  【解答】解一:設(shè)上、下邊襯寬均為4xcm,左、右邊襯寬均為3xcm,

  則(40﹣8x)(30﹣6x)= ×40×30.

  整理,得x2﹣10x+5=0,解之得x=5±2 ,

  ∴x1≈0.53,x2≈9.47(舍去),

  答:上、下邊襯寬均為2.1cm,左、右邊襯寬均為1.6cm.

  解二:設(shè)中央矩形的長為4xcm,寬為3xcm,

  則4x×3x= ×40×30,

  解得x1=4 ,x2=﹣4 (舍去),

  ∴上、下邊襯寬為20﹣8 ≈2.1,左、右邊襯寬均為15﹣6 ≈1.6,

  答:上、下邊襯寬均為2.1cm,左、右邊襯寬均為1.6cm.

  【點評】本題考查了一元二次方程解實際問題的運用,一元二次方程的解法的運用,解答時根據(jù)矩形的面積公式建立方程是關(guān)鍵.

  26.如①,A、B、C、D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.

  (1)求證:∠BAC=∠CAD;

  (2)如②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;

  (3)在(2)的條件下,連接BC,求 的值.

  【考點】切線的性質(zhì);相似三角形的判定與性質(zhì).

  【專題】計算題.

  【分析】(1)連結(jié)OC,如①,根據(jù)切線的性質(zhì)得OC⊥CE,由于CE∥BD,則OC⊥BD,再根據(jù)垂徑定理得到 = ,然后利用圓周角定理可得∠BAC=∠CAD;

  (2)如②,連結(jié)OC交BD于E,由(1)得OC⊥BD,則BE=DE,根據(jù)圓周角定理得到∠D=90°,則利用勾股定理可計算出BD=8,所以BE= BD=4,在Rt△OBE中計算出OE=3,再證明△OBE∽△OCE,然后利用相似比可計算出CE的長;

  (3)先計算出CE=2,由于 = ,則∠CDB=∠CAB,根據(jù)正切定義得到tan∠CBE= = ,則tan∠CBE= tan∠CAB= ,即得到 = .

  【解答】(1)證明:連結(jié)OC,如①,

  ∵CE為切線,

  ∴OC⊥CE,

  ∵CE∥BD,

  ∴OC⊥BD,

  ∴ = ,

  ∴∠BAC=∠CAD;

  (2)解:如②,連結(jié)OC交BD于E,

  由(1)得OC⊥BD,則BE=DE,

  ∵AB為直徑,

  ∴∠D=90°,

  ∴BD= = =8,

  ∴BE= BD=4,

  在Rt△OBE中,OE= =3,

  ∵BE∥CE,

  ∴△OBE∽△OCE,

  ∴ = ,即 = ,

  ∴CE= ;

  (3)解:∵OE=3,OC=5,

  ∴CE=5﹣3=2,

  ∵ = ,

  ∴∠CDB=∠CAB,

  ∵tan∠CBE= = = ,

  ∴tan∠CAB=tan∠CBE= ,

  ∵tan∠CAB= ,

  ∴ = .

  【點評】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.

  27.如①,已知拋物線C1:y=a(x+1)2﹣4的頂點為C,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標(biāo)是1.

  (1)求點C的坐標(biāo)及a 的值;

  (2)如②,拋物線C2與C1關(guān)于x軸對稱,將拋物線C2向右平移4個單位,得到拋物線C3.C3與x軸交于點B、E,點P是直線CE上方拋物線C3上的一個動點,過點P作y軸的平行線,交CE于點F.

 ?、偾缶€段PF長的最大值;

 ?、谌鬚E=EF,求點P的坐標(biāo).

  【考點】二次函數(shù)綜合題.

  【分析】(1)根據(jù)二次函數(shù)的性質(zhì)即可直接求得頂點C的坐標(biāo),把B的坐標(biāo)代入函數(shù)解析式即可求得a的值;

  (2)①C2的頂點坐標(biāo)是C關(guān)于x軸的對稱點,且二次項系數(shù)互為相反數(shù),據(jù)此即可求得C2的解析式,然后根據(jù)平移的性質(zhì)求得C3的解析式.利用待定系數(shù)法求得直線CE的解析式,則PF的長即可利用x表示出來,然后根據(jù)二次函數(shù)的性質(zhì)求得PF的最大值;

 ?、赑E=EF則P和F關(guān)于x軸對稱,即縱坐標(biāo)互為相反數(shù),據(jù)此即可列方程求解.

  【解答】解:(1)頂點C為(﹣1,﹣4).

  ∵點B(1,0)在拋物線C1上,∴0=a(1+1)2﹣4,解得,a=1;

  (2)①∵C2與C1關(guān)于x軸對稱,

  ∴拋物線C2的表達式為y=﹣(x+1)2+4,

  拋物線C3由C2平移得到,

  ∴拋物線C3為y=﹣(x﹣3)2+4=﹣x2+6x﹣5,

  ∴E(5,0),

  設(shè)直線CE的解析式為:y=kx+b,

  則 ,解得 ,

  ∴直線BC的解析式為y= x﹣ ,

  設(shè)P(x,﹣x2+6x﹣5),則F(x, x﹣ ),

  ∴PF=(﹣x2+6x﹣5)﹣( x﹣ )=﹣x2+ x﹣ =﹣(x﹣ )2+ ,

  ∴當(dāng)x= 時,PF有最大值為 ;

 ?、谌鬚E=EF,∵PF⊥x軸,

  ∴x軸平分PF,

  ∴﹣x2+6x﹣5=﹣ x+ ,

  解得x1= ,x2=5(舍去)

  ∴P( , ).

  【點評】本題考查了待定系數(shù)法求二次函數(shù)的解析式,以及二次函數(shù)的應(yīng)用,求函數(shù)最值問題常用的方法是轉(zhuǎn)化為函數(shù)的性質(zhì)問題.


看過北師大版九年級數(shù)學(xué)上冊期末試卷的還看了:

1.北師大版九年級數(shù)學(xué)上冊月考試卷

2.北師大版四年級數(shù)學(xué)上冊期末試卷

3.北師大版七年級數(shù)學(xué)上冊期末試卷

4.北師大版七年級數(shù)學(xué)上冊期末考試卷

1161901